首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.

Aims

Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of potent PGPR isolates on rice seed germination and seedling growth under salinity stress and ethylene production from rice seedlings inoculated with ACC deaminase containing PGPR.

Methods

Soils from root region of rice growing in coastal soils of varying salinity were used for isolating ACC deaminase producing bacteria and three bacterial isolates were identified following polyphasic taxonomy. Seed germination, root growth and stress ethylene production in rice seedlings following inoculation with selected PGPR under salt stress were quantified.

Results

Inoculation with selected PGPR isolates had considerable positive impacts on different growth parameters of rice including germination percentage, shoot and root growth and chlorophyll content as compared to uninoculated control. Inoculation with the ACC deaminase producing strains reduced ethylene production under salinity stress.

Conclusions

This study demonstrates the effectiveness of rhizobacteria containing ACC deaminase for enhancing salt tolerance and consequently improving the growth of rice plants under salt-stress conditions.  相似文献   

2.
The role of bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity in the interaction between tomato (Lycopersicon esculentum=Solanum lycopersicum) and Pseudomonas brassicacearum was studied in different strains. The phytopathogenic strain 520-1 possesses ACC deaminase activity, an important trait of plant growth-promoting rhizobacteria (PGPR) that stimulates root growth. The ACC-utilizing PGPR strain Am3 increased in vitro root elongation and root biomass of soil-grown tomato cv. Ailsa Craig at low bacterial concentrations (10(6) cells ml-1 in vitro and 10(6) cells g-1 soil) but had negative effects on in vitro root elongation at higher bacterial concentrations. A mutant strain of Am3 (designated T8-1) that was engineered to be ACC deaminase deficient failed to promote tomato root growth in vitro and in soil. Although strains T8-1 and 520-1 inhibited root growth in vitro at higher bacterial concentrations (>10(6) cells ml-1), they did not cause disease symptoms in vitro after seed inoculation, or in soil supplemented with bacteria. All the P. brassicacearum strains studied caused pith necrosis when stems or fruits were inoculated with a bacterial suspension, as did the causal organism of this disease (P. corrugata 176), but the non-pathogenic strain Pseudomonas sp. Dp2 did not. Strains Am3 and T8-1 were marked with antibiotic resistance and fluorescence to show that bacteria introduced to the nutrient solution or on seeds in vitro, or in soil were capable of colonizing the root surface, but were not detected inside root tissues. Both strains showed similar colonization ability either on root surfaces or in wounded stems. The results suggest that bacterial ACC deaminase of P. brassicacearum Am3 can promote growth in tomato by masking the phytopathogenic properties of this bacterium.  相似文献   

3.
Plant growth-promoting bacteria are useful to phytoremediation strategies in that they confer advantages to plants in contaminated soil. When plant growth-promoting bacteria contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, the bacterial cell acts as a sink for ACC, the immediate biosynthetic precursor of the plant growth regulator ethylene thereby lowering plant ethylene levels and decreasing the negative effects of various environmental stresses. In an effort to gain the advantages provided by bacterial ACC deaminase in the phytoremediation of metals from the environment two transgenic canola lines with the gene for this enzyme were generated and tested. In these transgenic canola plants, expression of the ACC deaminase gene is driven by either tandem constitutive cauliflower mosaic virus (CaMV) 35S promoters or the root specific rolD promoter from Agrobacterium rhizogenes. Following the growth of transgenic and non-transformed canola in nickel contaminated soil, it was observed that the rolD plants demonstrate significantly increased tolerance to nickel compared to the non-transformed control plants.  相似文献   

4.
Madhaiyan M  Poonguzhali S  Ryu J  Sa T 《Planta》2006,224(2):268-278
We report the presence of ACC deaminase in Methylobacterium fujisawaense and its lowering of ethylene levels and promotion of root elongation in canola seedlings under gnotobiotic conditions. To test a part of the previous model proposed for ACC deaminase producing bacteria with Methylobacterium, ACC levels and various enzyme activities were monitored in canola. Lower amounts of ACC were present in the tissues of seeds treated with M. fujisawaense strains than in control seeds treated with MgSO4. Though the increased activities of ACC synthase in the tissue extracts of the treated seedlings might be due to bacterial indole-3-acetic acid, the amount of ACC was reduced due to bacterial ACC deaminase activity. The activities of ACC oxidase, the enzyme catalyzing conversion of ACC to ethylene remained lower in M. fujisawaense treated seedlings. This consequently lowered the ethylene in plants and prevented ethylene inhibition of root elongation. Our results collectively suggest that Methylobacterium commonly found in soils, as well as on the surfaces of leaves, seeds, and in the rhizosphere of a wide variety of plants could be better exploited to promote plant growth.  相似文献   

5.
Previously, it was proposed that plant growth-promoting bacteria that possess the enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, can reduce the amount of ethylene produced by a plant and thereby promote root elongation. To test this model, canola seeds were imbibed in the presence of the chemical ethylene inhibitor, 2-aminoethoxyvinyl glycine (AVG), various strains of plant growth-promoting bacteria, and a psychrophilic bacterium containing an ACC deaminase gene on a broad host range plasmid. The extent of root elongation and levels of ACC, the immediate precursor of ethylene, were measured in the canola seedling roots. A modification of the Waters AccQ.Tag Amino Acid Analysis Method was used to quantify ACC in the root extracts. It was found that, in the presence of the ethylene inhibitor, AVG, or any one of several ACC deaminase-containing strains of bacteria, the growth of canola seedling roots was enhanced and the ACC levels in these roots were lowered.  相似文献   

6.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   

7.
Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions.  相似文献   

8.
Madhaiyan M  Poonguzhali S  Sa T 《Planta》2007,226(4):867-876
The possible interaction of the plant hormones auxin and ethylene and the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing bacteria on ethylene production in canola (Brassica campestris) in the presence of inhibitory concentrations of growth regulators were investigated. The effects of auxin (indole-3-acetic acid and 2,4-dichlorophenoxy acetic acid), auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid, ethylene precursor 1-aminocyclopropane-1-carboxylate and ethylene synthesis inhibitor l-α-(2-aminoethoxyvinyl)glycine hydrochloride on root elongation were concentration dependent. Exogenous addition of growth regulators influences the enzyme activities of ethylene production and we have presented here evidences that support the hypothesis that inhibitory effects of auxin on root elongation are independent of ethylene. Additionally, we have proved that inoculation of ACC deaminase containing Methylobacterium oryzae sequester ACC exuded from roots and hydrolyze them lowering the concentration of ACC in root exudates. However, the inhibitory actions of exogenous additions of auxins could not be ameliorated by bacterial inoculation that reduces ethylene concentration in canola seedlings.  相似文献   

9.
Perspectives of bacterial ACC deaminase in phytoremediation   总被引:3,自引:0,他引:3  
Phytoremediation of contaminated soil and water environments is regulated and coordinated by the plant root system, yet root growth is often inhibited by pollutant-induced stress. Prolific root growth could maximize rates of hyperaccumulation of inorganic contaminants or rhizodegradation of organic pollutants, and thus accelerate phytoremediation. Accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as a major limitation in improving phytoremediation efficiency. Recent work shows that bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase regulates ethylene levels in plants by metabolizing its precursor ACC into alpha-ketobutyric acid and ammonia. Plants inoculated with ACC deaminase bacteria or transgenic plants that express bacterial ACC deaminase genes can regulate their ethylene levels and consequently contribute to a more extensive root system. Such proliferation of roots in contaminated soil can lead to enhanced uptake of heavy metals or rhizodegradation of xenobiotics.  相似文献   

10.
Pseudomonas fluorescens strain CHA0, a root colonizing bacterium, has a broad spectrum of biocontrol activity against plant diseases. However, strain CHA0 is unable to utilize 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of plant ethylene, as a sole source of nitrogen. This suggests that CHA0 does not contain the enzyme ACC deaminase, which cleaves ACC to ammonia and alpha-ketobutyrate, and was previously shown to promote root elongation of plant seedlings treated with bacteria containing this enzyme. An ACC deaminase gene, together with its regulatory region, was transferred into P. fluorescens strains CHA0 and CHA96, a global regulatory gacA mutant of CHA0. ACC deaminase activity was expressed in both CHA0 and CHA96. Transformed strains with ACC deaminase activity increased root length of canola plants under gnotobiotic conditions, whereas strains without this activity had no effect. Introduction of ACC deaminase genes into strain CHA0 improved its ability to protect cucumber against Pythium damping-off, and potato tubers against Erwinia soft rot in small hermetically sealed containers. In contrast, ACC deaminase activity had no significant effect on the ability of CHA0 to protect tomato against Fusarium crown and root rot, and potato tubers against soft rot in large hermetically sealed containers. These results suggest that (i) ACC deaminase activity may have lowered the level of plant ethylene thereby increasing root length; (ii) the role of stress-generated plant ethylene in susceptibility or resistance depends on the host-pathogen system, and on the experimental conditions used; and (iii) the constructed strains could be developed as biosensors for the role of ethylene in plant diseases.  相似文献   

11.
Symbiotic association between rhizobia and legumes results in the development of unique structures on roots, called nodules. Nodulation is a very complex process involving a variety of genes that control NOD factors (bacterial signaling molecules), which are essential for the establishment, maintenance and regulation of this process and development of root nodules. Ethylene is an established potent plant hormone that is also known for its negative role in nodulation. Ethylene is produced endogenously in all plant tissues, particularly in response to both biotic and abiotic stresses. Exogenous application of ethylene and ethylene-releasing compounds are known to inhibit the formation and functioning of nodules. While inhibitors of ethylene synthesis or its physiological action enhance nodulation in legumes, some rhizobial strains also nodulate the host plant intensively, most likely by lowering endogenous ethylene levels in roots through their 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Co-inoculation with ACC deaminase containing plant growth promoting rhizobacteria plus rhizobia has been shown to further promote nodulation compared to rhizobia alone. Transgenic rhizobia or legume plants with expression of bacterial ACC deaminase could be another viable option to alleviate the negative effects of ethylene on nodulation. Several studies have well documented the role of ethylene and bacterial ACC deaminase in development of nodules on legume roots and will be the primary focus of this critical review.  相似文献   

12.
Promotion of Plant Growth by Bacterial ACC Deaminase   总被引:7,自引:0,他引:7  
To date, there has been only limited commercial use of plant growth-promoting bacteria in agriculture, horticulture, and silviculture. However, with recent progress toward understanding the mechanisms that these organisms utilize to facilitate plant growth, the use of plant growth-promoting bacteria is expected to continue to increase worldwide. One of the key mechanisms employed by plant growth-promoting bacteria to facilitate plant growth is the lowering of plant ethylene levels by the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase. This article reviews the published work on this enzyme, with an emphasis on its biochemistry, protein structure, genes, and regulation. In addition, this article provides some initial insights into the changes in both plants and ACC deaminase-containing plant growth-promoting bacteria as a consequence of plant-microbe interactions. Finally, a brief discussion of how bacterial ACC deaminase and indoleacetic acid (IAA) together modulate plant growth and development is included.  相似文献   

13.
ACC脱氨酶是一种有效降低逆境乙烯含量的外源促生物质,该酶在干旱、盐胁迫及重金属污染等逆境条件下能显著提高农作物的抗逆性和增加产量,深入挖掘ACC脱氨酶的应用价值对农业可持续发展具有重要的意义.该文综述了ACC脱氨酶的作用机制及酶活性的影响因素,并重点论述了ACC脱氨酶在提高作物抗逆性及产量和转基因技术等方面应用研究进展.分析了关于拓展ACC脱氨酶取材和应用范围,量化含ACC脱氨酶的根际微生物定殖能力等问题,并展望了 ACC脱氨酶在植物修复领域的应用以及建立ACC脱氨酶转基因技术体系等方面的研究前景和意义.  相似文献   

14.
The ACC deaminase gene (acdS) from Enterobacter cloacae UW4 was replaced by homologous recombination with the acdS gene with a tetracycline resistance gene inserted within the coding region. Upon characterization of this AcdS minus mutant, it was determined that both ACC deaminase activity and the ability to promote the elongation of canola roots under gnotobiotic conditions were greatly diminished. This result is consistent with a previously postulated model that suggests that a major mechanism utilized by plant growth-promoting bacteria involves the lowering of plant ethylene levels, and hence ethylene inhibition of root elongation, by bacterial ACC deaminase. Received: 20 January 2000 / Accepted: 22 February 2000  相似文献   

15.
Diazotrophic bacteria isolated from the rhizosphere of Chinese cabbage were assessed for other plant growth promoting characteristics viz., production of IAA, ethylene, ACC deaminase, phosphate solubilization, and gnotobiotic root elongation. Their effect on inoculation to Chinese cabbage was also observed under growth chamber conditions. A total of 19 strains that showed higher nitrogenase activity identified by 16S rRNA gene sequence analysis were found to be the members of the genera Pseudomonas and Agrobacterium belonging to α- and γ-Proteobacteria groups. These strains were also efficient in producing IAA and ACC deaminase though they produced low levels of ethylene and no phosphate solubilization. In addition, inoculation of selected diazotrophic bacterial strains significantly increased seedling length, dry weight, and total nitrogen when compared to uninoculated control. The colonization of crop plants by diazotrophic bacteria can be affected by many biotic and abiotic factors, and further studies are oriented towards investigating the factors that could influence the establishment of a selected bacterial community.  相似文献   

16.
Salinity is one of the most important stresses that hamper agricultural productivity in nearly every part of the world. Enhanced biosynthesis of ethylene in plants under salinity stress is well established. Higher ethylene concentration inhibits root growth and ultimately affects the overall plant growth. Overcoming this ethylene-induced root inhibition is a prerequisite for successful crop production. Recent studies have shown that ethylene level in plants is regulated by a key enzyme 1-aminocyclopropane-1-carboxylicacid (ACC)-deaminase. This enzyme is present in plant growth-promoting bacteria (PGPR) and lowers the ethylene level by metabolizing its precursor ACC into α-ketobutyrate and ammonia (NH3). Inoculation of plants under salinity stress with PGPR having ACC-deaminase activity mitigates the inhibitory effects of salinity on root growth by lowering the ethylene concentration in the plant. This in turn results in prolific root growth, which is beneficial for the uptake of nutrients and maintenance of growth under stressful environment. The present review critically discusses the effects of salinity stress on plant growth with special reference to ethylene production and the effects of rhizobacteria containing ACC-deaminase on crop improvement under salinity stress. It also discusses how much progress has been made in producing transgenic lines of different crops over-expressing the gene encoding ACC-deaminase and how far such transformed lines can tolerate salinity stress.  相似文献   

17.
Responses of rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria, Pseudomonas putida Am2, Pseudomonas putida Bm3, Alcaligenes xylosoxidans Cm4, and Pseudomonas sp. Dp2, containing 1-aminocyclopropane-l-carboxylate (ACC) deaminase were studied using growth pouch and soil cultures. In growth pouch culture, the bacteria significantly increased root elongation of phosphorus-sufficient seedlings, whereas root elongation of phosphorus-deficient seedlings was not affected or was even inhibited by the bacteria. Bacterial stimulation of root elongation of phosphorus-sufficient seedlings was eliminated in the presence of a high ammonia concentration (1 mM) in the nutrient solution. Bacterial effects on root elongation of potassium-deficient and potassium-sufficient seedlings were similar. The bacteria also decreased inorganic phosphate content in shoots of potassium- and phosphorus-sufficient seedlings, reduced ethylene production by phosphorus-sufficient seedlings, and inhibited development of root hairs. The effects of treatment with Ag+, a chemical inhibitor of plant ethylene production, on root elongation, ethylene evolution, and root hair formation were similar to bacterial treatments. The number of bacteria on the roots of phosphorus-deficient seedlings was not limited by phosphorus deficiency. In pot experiments with soil culture, inoculation of seeds with bacteria and treatment with aminoethoxyvinylglycine, an inhibitor of ethylene biosynthesis in plants, increased root and (or) shoot biomass of rape plants. Stimulation of plant growth caused by the bacteria was often associated with a decrease in the content of nutrients, such as P, K, S, Mo, and Ba, in shoots, depending on the strain used. The results obtained show that the growth-promoting effects of ACC-utilizing rhizobacteria depend significantly on the nutrient status of the plant.  相似文献   

18.
In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate (S2O3) oxidation, the production of ammonia (NH3), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1- aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated saltstressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.  相似文献   

19.
The enzyme 1-aminocyclopropane-1-carboxylate deaminase converts ACC, the precursor of the plant hormone ethylene to α-ketobutyrate and ammonium. The enzyme has been identified in few soil bacteria, and is proposed to play a key role in plant growth promotion. In this study, the isolates of plant growth promoting rhizobacteria were screened for ACC deaminase activity based on their ability to grow on ACC as a sole nitrogen source. The selected isolates showed the presence of other plant growth promoting characteristics such as IAA production, phosphate solubilization and siderophore production. The role of ACC deaminase in lowering ethylene production under cadmium stress condition was also studied by measuring in vitro ethylene evolution by wheat seedlings treated with ACC deaminase positive isolates. Nucleic acid hybridization confirmed the presence of ACC deaminase gene (acdS) in the bacterial isolates.  相似文献   

20.
AIMS: This study was conducted to test the hypothesis that the bacterial strains possessing 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity may also promote growth of inoculated plants and could increase nodulation in legumes upon co-inoculation with rhizobia. METHODS AND RESULTS: Several rhizobacteria were isolated from maize rhizosphere through enrichment on ACC as a sole N source. Purified isolates were screened for growth promotion in maize under axenic conditions and for in vitro ACC-deaminase activity. A significant positive correlation was observed between in vitro ACC-deaminase activity of bacterial cells and root elongation. None of the isolates produced auxins. Bradyrhizobium japonicum produced less amount of auxins but did not carry ACC-deaminase activity. Results of pot experiment revealed that co-inoculation with Bradyrhizobium and plant growth promoting rhizobacteria (PGPR) isolates enhanced the nodulation in mung bean compared with inoculation with Bradyrhizobium alone. CONCLUSIONS: It is highly expected that inoculation with rhizobacteria containing ACC-deaminase hydrolysed endogenous ACC into ammonia and alpha-ketobutyrate instead of ethylene. Consequently, root and shoot growth as well as nodulation were promoted. SIGNIFICANCE AND IMPACT OF THE STUDY: The ACC-deaminase trait could be employed as an efficient tool to screen effective PGPR, which could be successfully used as biofertilizers to increase the growth of inoculated plants as well as nodulation in legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号