首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The enzymic synthesis of the 1-phosphonomethyl isostere of fructose 1,6-diphosphate in which the 1-phosphate (-OPO(3)H(2)) is replaced by the phosphonomethyl group (-CH(2)PO(3)H(2)) is described. The kinetic properties of this fructose diphosphate isostere and of 4-hydroxy-3-oxobutylphosphonic acid, an isostere of dihydroxyacetone phosphate, with aldolase (EC 4.1.2.13), fructose diphosphatase (EC 3.1.3.11) and glycerol phosphate dehydrogenase (EC 1.1.1.8) are described (see Table 1).  相似文献   

2.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

3.
Wild-type glycerol kinase of Escherichia coli is inhibited by both nonphosphorylated enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system and fructose 1,6-diphosphate. Mutant glycerol kinase, resistant to inhibition by fructose 1,6-diphosphate, was much less sensitive to inhibition by enzyme IIIGlc. The difference between the wild-type and mutant enzymes was even greater when inhibition was measured in the presence of both enzyme IIIGlc and fructose 1,6-diphosphate. The binding of enzyme IIIGlc to glycerol kinase required the presence of the substrate glycerol.  相似文献   

4.
It was found that fructose 1,6-diphosphate, the main intermediate of glycolysis, was able to act as a coenzyme of yeast phosphoglucomutase reaction. The mechanism of the coenzymatic activity of fructose 1,6-diphosphate was studied. It was indicated in the fructose 1,6-diphosphate dependent reaction that glucose 1,6-diphosphate was formed by the phosphate-transfer of fructose 1,6-diphosphate to glucose 1-phosphate in the first step, and in the second step the conversion of glucose 1-phosphate to glucose 6-phosphate, the original mutase reaction, occurred in the presence of glucose 1,6-diphosphate. The kinetic constants in the reaction of the first step were determined from the time courses of the fructose 1,6-diphosphate dependent reaction.  相似文献   

5.
The present paper describes the synthetic routes of six phosphono analogues of dihydroxyacetone phosphate and five phosphono analogues of glyceraldehyde 3-phosphate through alpha-, beta- and gamma-hydroxyphosphonate esters precursors containing a protected carbonyl group. In some situations, depending on the sequence used for the deprotection of the phosphonate and carbonyl groups, the aldol/ketol rearrangement allowed the synthesis of either dihydroxyacetone phosphate or glyceraldehyde 3-phosphate analogues from the same precursors. All these analogues are of interest both as active-site probes and as potential substrates for glycolytic enzymes such as fructose 1,6-diphosphate aldolases (EC 4.1.2.13).  相似文献   

6.
Fraenkel, D. G. (Albert Einstein College of Medicine, New York, N.Y.), and B. L. Horecker. Fructose-1,6-diphosphatase and acid hexose phosphatase of Escherichia coli. J. Bacteriol. 90:837-842. 1965.-The conversion of fructose-1,6-diphosphate to fructose-6-phosphate (fructose-1,6-diphosphatase activity) is essential for growth of Escherichia coli on glycerol, acetate, or succinate, but is unnecessary for growth on hexoses or pentoses. It has sometimes been assumed that fructose-1,6-diphosphatase activity is due to a nonspecific acid hexose phosphatase. We have now obtained a number of one-step mutants which have lost the ability to grow on glycerol, succinate, or acetate, but which grow normally on hexoses; these mutants are deficient in a fructose-1,6-diphosphatase which can be assayed spectrophotometrically in the presence of Mg(++) and low concentrations of substrate. These mutants still possess the nonspecific acid hexose phosphatase, which does not require Mg(++) and is active only at much higher concentrations of fructose-1,6-diphosphate. Evidence is presented to support the hypothesis that the newly described activity is the physiological fructose-1,6-diphosphatase. The acid hexose phosphatase is a different enzyme whose function remains unknown.  相似文献   

7.
We previously reported a cytosolic pyruvate kinase (EC 2.7.1.40) from Toxoplasma gondii (TgPyKI) that differs from most eukaryotic pyruvate kinases in being regulated by glucose 6-phosphate rather than fructose 1,6-diphosphate. Another putative pyruvate kinase (TgPyKII) was identified from parasite genome, which exhibits 32% amino acid sequence identity to TgPyKI and retains pyruvate kinase signature motifs and amino acids essential for substrate binding and catalysis. Whereas TgPyKI is most closely related to plant/algal enzymes, phylogenetic analysis suggests a proteobacterial origin for TgPyKII. Enzymatic characterization of recombinant TgPyKII shows a high pH optimum at 8.5, and a preference for GDP as a phosphate recipient. Catalytic activity is independent of K+, and no allosteric or regulatory effects were observed in the presence of fructose 1,6-diphosphate, fructose 2,6-diphosphate, glucose 6-phosphate, ribose 5-phosphate, AMP, or ATP. Unlike TgPyKI, native TgPyKII activity was exclusively associated with the membranous fraction of a T. gondii tachyzoite lysate. TgPyKII possesses a long N-terminal extension containing five putative start codons before the conserved region and localizes to both apicoplast and mitochondrion by immunofluorescence assay using native antibody and fluorescent protein fusion to the N-terminal extension. Further deletional and site-directed mutagenesis suggests that a translation product from 1st Met is responsible for the localization to the apicoplast, whereas one from 3rd Met is for the mitochondrion. This is the first study of a potential mitochondrial pyruvate kinase in any system.  相似文献   

8.
Extracts of mature seeds of Cuscuta reflexa were examined for any deficiency in key enzymes. The activities of malate dehydrogenase, β-amylase and fructose 1,6-diphosphate aldolase exceeded 5.0 μmol substrate/min/g, while those of starch phosphorylase, α-amylase, acid phosphatase, phosphogluconate dehydrogenase (decarboxylating), aspartate aminotransferase, glucose 6-phosphate dehydrogenase, fructose 1,6-diphosphatase and alanine aminotransferase fell within the range 1 to 5 μmol/min/g and hexokinase, isocitrate dehydrogenase and alkaline phosphatase were below 1 μmol substrate/min/g seed powder. No activity of the following were found: acid invertase, alkaline invertase, phytase and glutamate dehydrogenase. Some of these observations were made also for seeds of Cuscuta campestris and Cuscuta indicora.  相似文献   

9.
Level of photosynthetic intermediates in isolated spinach chloroplasts   总被引:15,自引:12,他引:3       下载免费PDF全文
Latzko E  Gibbs M 《Plant physiology》1969,44(3):396-402
The level of intermediates of the photosynthetic carbon cycle was measured in intact spinach chloroplasts in an attempt to determine the cause of the induction lag in CO2 assimilation. In addition, transient changes in the level of the intermediates were determined as affected by a light-dark period and by the addition of an excess amount of bicarbonate during a period of steady photosynthesis. Assayed enzymically were: ribulose 1,5-diphosphate, pentose monophosphates (mixture of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate, hexose monophosphates (mixture of glucose 6-phosphate, glucose 1-phosphate, and fructose 6-phosphate), glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, glycerate acid 3-phosphate, a mixture of fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP).  相似文献   

10.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker’s yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

11.
Both NAD- and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (G3PDH) (EC 1.2.1.12) activities were detected in glucose-grown cells of Pseudomonas aeruginosa strain PAO. After growth on gluconeogenic substrates such as citrate, the activity of the NAD-G3PDH was reduced severalfold in contrast to little change for the NADP-G3PDH. The two G3PDH activities could be separated by ammonium sulphate fractionation. PAGE revealed the presence of two G3PDH isoenzymes of 140 (NADP-specific) and 315 (NAD-specific) kDa. Slight differences were observed in the thermostabilities and pH optima of the two enzymes whereas the regulation of their activities by various compounds varied strongly. The NADP-G3PDH enzyme was activated by ATP, reduced NAD, and fructose 6-phosphate. It was inhibited by fructose 1,6-diphosphate and 6-phosphogluconate. The NAD-G3PDH enzyme was inhibited by ATP, reduced NAD, and 6-phosphogluconate; it was slightly activated by reduced NADP. The possible roles of these isoenzymes in the control of hexose catabolism and gluconeogenesis in P. aeruginosa are discussed.  相似文献   

12.
Several peaks of aldolase activity are found in the isoelectric focusing pattern of pea (Pisum sativum) leaf chloroplast extracts. One peak, separated by 0.5 pH unit from the major chloroplast aldolase peak, is found when cytoplasmic extracts are focused. The chloroplast and cytoplasmic enzymes have a pH 7.4 optimum with fructose 1,6-diphosphate. The Michaelis constant for fructose-1,6-diphosphate is 19 μM for the chloroplast, 21 μM for the cytoplasmic enzyme, and for sedoheptulose 1,7-diphosphate, 8 μM for the chloroplast enzyme, 18 μM for the cytoplasmic enzyme. Both enzymes are inhibited by d-glyceraldehyde 3-phosphate and by ribulose 1,5-diphosphate. The similarity in the catalytic properties of the isoenzymes suggests that both enzymes have an amphibolic role in carbon metabolism in the green leaf.  相似文献   

13.
A specific sucrose phosphatase from plant tissues   总被引:6,自引:2,他引:4       下载免费PDF全文
1. A phosphatase that hydrolyses sucrose phosphate (phosphorylated at the 6-position of fructose) was isolated from sugar-cane stem and carrot roots. With partially purified preparations fructose 6-phosphate, glucose 6-phosphate, fructose 1-phosphate, glucose 1-phosphate and fructose 1,6-diphosphate are hydrolysed at between 0 and 2% of the rate for sucrose phosphate. 2. The activity of the enzyme is increased fourfold by the addition of Mg(2+) ions and inhibited by EDTA, fluoride, inorganic phosphate, pyrophosphate, Ca(2+) and Mn(2+) ions. Sucrose (50mm) reduces activity by 60%. 3. The enzyme exhibits maximum activity between pH6.4 and 6.7. The Michaelis constant for sucrose phosphate is between 0.13 and 0.17mm. 4. At least some of the specific phosphatase is associated with particles having the sedimentation properties of mitochondria. 5. A similar phosphatase appears to be present in several other plant species.  相似文献   

14.
The activities of individual enzymes of the isoprenoid pathway from mevalonate kinase to squalene synthetase in homogenates of seeds germinated up to 32h were assayed. Changes in the activity of each enzyme were observed and compared with the activity at the 2h germination stage. Activities of alkaline phosphatase and fructose 1,6-diphosphate aldolase were similarly measured to provide a reference for changes in the general metabolic activity of seeds during imbibition of water. Water uptake reached a plateau after 12h. The reference enzymes almost doubled in activity between 2 and 8h and thereafter their activities steadily declined. All of the enzymes of the isoprenoid pathway increased in activity between 2 and 6h and, thereafter, with the exception of the prenyltransferase, their activities remained relatively constant. With the prenyltransferase activity the initial increase was followed by a short plateau between 6 and 9h and then a second increase to a maximum between 14 and 16h. After 16h the activity declined. The relative activities of the isoprenoid enzymes at 16h of germination were mevalonate kinase>phosphomevalonate kinase>pyrophosphomevalonate decarboxylase≈isopentenyl pyrophosphate isomerase>squalene synthetase>isopentenyl pyrophosphate/dimethylallyl pyrophosphate prenyltransferase. The finding that the prenyltransferase may be the rate-limiting enzyme in squalene synthesis from mevalonate is discussed in relation to regulation of isoprenoid synthesis during pea-seed germination.  相似文献   

15.
1. Lactic acid formation in supernatant fractions of homogenates of cat or rat small-intestinal mucosa was measured under optimum conditions with glucose, fructose, glucose 6-phosphate, fructose 1,6-diphosphate or 3-phosphoglycerate as substrate. 2. Between 80 and 107% of the glycolytic activity of the homogenate was recovered in these particle-free preparations when glucose, fructose, glucose 6-phosphate or fructose 1,6-diphosphate was used as substrate. 3. Evidence was obtained that hexokinase and phosphofructokinase were the rate-limiting enzymes in the initial sequence of glycolytic reactions. The limitation of rate by hexokinase was much more pronounced in preparations from the cat than in those from the rat. 4. With subcellular preparations from cat or rat small intestine lactic acid was also formed from ribose 5-phosphate and at rates similar to those observed with glucose. 5. A higher rate of glycolysis was observed with glucose 6-phosphate as substrate with preparations from the proximal half of the small intestine of the rat as compared with the distal half. 6. Mucosal preparations from rats starved for 24-48hr. exhibited only about one-quarter of the glycolytic activity of those of fed control groups. The decreased rate of formation of lactic acid from either glucose or fructose was mainly due to a decrease in the activity of hexokinase(s). The activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and a number of other enzymes were not significantly decreased by starvation. 7. The results are discussed in relation to metabolic control of glycolysis in other mammalian tissues.  相似文献   

16.
1. The maximum catalytic activities of fructose diphosphatase from flight muscles of bumble-bees (Bombus spp.) are at least 30-fold those reported for the enzyme from other tissues. The maximum activity of fructose diphosphatase in the flight muscle of any particular bee is similar to that of phosphofructokinase in the same muscle, and the activity of hexokinase is similar to or greater than the activity of phosphofructokinase. There is no detectable activity of glucose 6-phosphatase and only a very low activity of glucose 6-phosphate dehydrogenase in these muscles. The activities of both fructose diphosphatase and phosphofructokinase vary inversely with the body weight of the bee, whereas that of hexokinase is relatively constant. 2. There is no significant hydrolysis of fructose 1-phosphate, fructose 6-phosphate, glucose 1,6-diphosphate and glycerol 3-phosphate by extracts of bumble-bee flight muscle. 3. Fructose 1,6-diphosphatase from bumble-bee flight muscle and from other muscles is inhibited by Mn(2+) and univalent cations; the potency of inhibition by the latter varies in the order Li(+)>Na(+)>K(+). However, the fructose diphosphatase from bumble-bee flight muscle is different from the enzyme from other tissues in that it is not inhibited by AMP. 4. The contents of ATP, hexose monophosphates, fructose diphosphate and triose phosphates in bumble-bee flight muscle showed no significant changes between rest and flight. 5. It is proposed that both fructose diphosphatase and phosphofructokinase are simultaneously active and catalyse a cycle between fructose 6-phosphate and fructose diphosphate in resting bumble-bee flight muscle. Such a cycle would produce continuous hydrolysis of ATP, with the release of energy as heat, which would help to maintain the thoracic temperature during rest periods at a level adequate for flight.  相似文献   

17.
The purpose of this study was to further examine the hypothesis that variations in hepatic fructose-metabolizing enzymes between males and females might account for the differences in the severity of copper (Cu) deficiency observed in fructose-fed male rats. Weanling rats of both sexes were fed high-fructose diets either adequate or deficient in copper for 45 days. Cu deficiency decreased sorbitol dehydrogenase activity and dihydroxyacetone phosphate levels and increased glyceraldehyde levels in both sexes. Gender effects were expressed by higher activities of glycerol 3-phosphate dehydrogenase and aldehyde dehydrogenase in male than in female rats and higher levels of dihydroxyacetone phosphate and fructose 1,6-diphosphate (F1,6DP) in female than in male rats. The interactions between dietary Cu and gender were as follows: alcohol dehydrogenase activities were higher in female rats and were further increased by Cu deficiency in both sexes; aldehyde dehydrogenase activities were decreased by Cu deficiency only in male rats; sorbitol levels were higher in male rats and were further increased by Cu deficiency in male rats; fructose 1-phosphate (F1P) levels were increased by Cu deficiency in both sexes, but to a greater extent in male rats; glyceraldehyde 3-phosphate levels were higher in female rats, but were decreased by Cu deficiency in female and increased in male rats. Though most of the examined hepatic fructose-metabolizing enzymes and metabolites showed great differences between rats fed diets either adequate or deficient in Cu, it is the activity of fructokinase and aldolase-B, and the concentrations of their common metabolites, F1P and notably F1,6DP, that could be in part responsible for differences in the severity of pathologies associated with Cu deficiency observed between female and male rats.  相似文献   

18.
The primary catabolic pathways in the fungi Penicillium notatum and P. duponti, and Mucor rouxii and M. miehei were examined by measuring the relative rate of 14CO2 production from different carbon atoms of specifically labelled glucose. It was found that these organisms dissimilate glucose predominantly via the Embden--Meyerhof pathway in conjunction with the tricarboxylic acid cycle and to a lesser extent by the pentose phosphate pathway. Phosphofructokinase (EC 2.7.1.11) activity could not be detected initially in Penicillium species because of the interference from mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and NADH oxidase (EC 1.6.99.3). A combination of differential centrifuging and a heat treatment of Penicillium cell-free extracts in the presence of fructose-6-phosphate removed the interfering enzymes. The kinetic characteristics of phosphofructokinase from P. notatum and M. rouxii are described. The enzyme presents highly cooperative kinetics for fructose-6-phosphate. The kinetics for ATP show no cooperativity and inhibition by excess ATP is observed. The addition of AMP activated the P. notatum enzyme, relieving ATP inhibition; slight inhibition by AMP was observed with the M. rouxii enzyme. In contrast M. rouxii pyruvate kinase (EC 2.7.1.40) is activated 50-fold by fructose-1,6-diphosphate whereas pyruvate kinase from P. notatum and P. duponti were unaffected by fructose-1,6-diphosphate.  相似文献   

19.
Effect of Oxygenation on Xylose Fermentation by Pichia stipitis   总被引:3,自引:5,他引:3       下载免费PDF全文
The effect of oxygen limitation on xylose fermentation by Pichia stipitis (CBS 6054) was investigated in continuous culture. The maximum specific ethanol productivity (0.20 g of ethanol g dry weight−1 h−1) and ethanol yield (0.48 g/g) was reached at an oxygen transfer rate below 1 mmol/liter per h. In the studied range of oxygenation, the xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were constant as well as the ratio between the NADPH and NADH activities of xylose reductase. No xylitol production was found. The pyruvate decarboxylase (EC 4.1.1.1) activity increased and the malate dehydrogenase (EC 1.1.1.37) activity decreased with decreasing oxygenation. With decreasing oxygenation, the intracellular intermediary metabolites sedoheptulose 7-phosphate, glucose 6-phosphate, fructose 1,6-diphosphate, and malate accumulated slightly while pyruvate decreased. The ratio of the xylose uptake rate under aerobic conditions, in contrast to that under anaerobic assay conditions, increased with increasing oxygenation in the culture. The results are discussed in relation to the energy level in the cell, the redox balance, and the mitochondrial function.  相似文献   

20.
After 5 h of treatment with glucagon, liver L-type pyruvate kinase (ATP: pyruvate 2-0-phosphotransferase; EC 2.7.1.40) showed a significant decrease of K0.5 and the Hill coefficient (nH) in the absence of fructose 1,6-diphosphate. However, in the presence of fructose 1,6-diphosphate, liver enzymes from treated rats showed a slight decrease of K0.5 but nH remained unchanged. In both circumstances, no changes of Vmax were observed after treatment. These changes in the kinetic properties of liver L-type pyruvate kinase are consistent with the dephosphorylation of the enzyme caused by insulin release in response to treatment with glucagon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号