首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The impact of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) in the pathology of Parkinson's disease (PD) and in MPTP neurotoxicity remains unclear. Here, male TNF-alpha (-/-) deficient mice and C57bL/6 mice were treated with MPTP (4 x 15 mg/kg, 24 h intervals) and in one series, thalidomide was administered to inhibit TNF-alpha synthesis. Real-time RT-PCR revealed that the striatal mRNA levels of TNF-alpha, of the astrocytic marker glial fibrillary acidic protein (GFAP) and of the marker for activated microglia, macrophage antigen complex-1 (MAC-1), were significantly enhanced after MPTP administration. Thalidomide (50 mg/kg, p.o.) partly protected against the MPTP-induced dopamine (DA) depletion, and TNF-alpha (-/-) mice showed a significant attenuation of striatal DA and DA metabolite loss as well as striatal tyrosine hydroxylase (TH) fiber density, but no difference in nigral TH and DA transporter immunoreactivity. TNF-alpha deficient mice suffered a lower mortality (10%) compared to the high mortality (75%) seen in wild-type mice after acute MPTP treatment (4 x 20 mg/kg, 2 h interval). HPLC measurement of MPP(+) levels revealed no differences in TNF-alpha (-/-), wild-type and thalidomide treated mice. This study demonstrates that TNF-alpha is involved in MPTP toxicity and that inhibition of TNF-alpha response may be a promising target for extending beyond symptomatic treatment and developing anti-parkinsonian drugs for the treatment of the inflammatory processes in PD.  相似文献   

2.
As a deacetylase, SIRT1 plays essential roles in various physiological events, from development to lifespan regulation. SIRT1 has been shown neuroprotective effects in neurodegeneration disorders such as Parkinson's disease (PD). However, the underlying molecular mechanisms are still not well understood. Here, we generated transgenic mice with increased expression of Sirt1 in the brain and examined the potential roles of SIRT1 in PD. Our data showed that SIRT1 repressed proinflammatory cytokine expression both in microglia and astrocytes. In MPTP induced PD model mice, lower levels of microglia and astrocyte activation were observed in SIRT1 transgenic mice. Moreover, the tyrosine hydroxylase (TH) loss in the substantia nigra pars compacta (SNpc) and striatum induced by MPTP was also attenuated by SIRT1. As a consequence, the behavioral defects induced by MPTP were largely prevented in SIRT1 transgenic mice. Mechanistically, SIRT1 interacts with heat shock 70 kDa protein 4 (HSPA4) and deacetylates it at 305, 351 and 605 lysine residues. This deacetylation modification induces the nuclear translocation of HSPA4 and thus to repress proinflammatory cytokine expression. On the contrary, mutated HSPA4, in which 305/351/605 lysine residues were replaced with arginine, was mainly localized in the cytoplasm and losses its repression on proinflammatory cytokine expression. Taken together, our data indicate that SIRT1 plays beneficial roles in PD model mice, which is likely due to, at least in part, its anti-inflammation activity in glial cells by deacetylating HSPA4. Furthermore, HSPA4 might be a druggable target for developing novel agents for treating neuroinflammation associated disorders such as PD.  相似文献   

3.
SAG-1, one of the major surface proteins of Toxoplasma gondii, has been reported to play an important role in immune and pathogenic mechanisms of the parasites but its exact function is still unclear. We investigated the time courses of T. gondii infection in B6C3F1 transgenic mice carrying the SAG-1 gene. SAG-1 transgenic mice were infected intraperitoneally with a high virulent RH strain or a low virulent Beverley strain of T. gondii. When infected with RH strain tachyzoites, no significant differences in time courses of survivals between SAG-1 transgenic and wild-type mice were observed. Both groups succumbed to an acute infection within 8 days after infection. However, a lower survival rate (20%) was observed in SAG-1 transgenic mice than in wild-type (80%), when infected with Beverley strain cysts. This result indicates that SAG-1 transgenic mice are more susceptible to T. gondii infection as compared with their wild-type counterpart. ELISA using recombinant SAG-1 protein indicates that SAG-1 transgenic mice do not produce antibodies to the SAG-1 molecule. These findings may provide a critical tool for analysing the molecular mechanisms of pathogenesis and host immune responses during toxoplasmosis.  相似文献   

4.
Parkinson disease (PD) is a common and disabling disorder. No current therapy can slow or reverse disease progression. An important aspect of research in this field is target validation, a systematic approach to evaluating the likelihood that modification of a certain molecule, mechanism or biological pathway may be useful for the development of pharmacological or molecular treatments for the disease. TorsinA, a member of the AAA+ family of chaperone proteins, has been proposed as a potential target of neuroprotective therapy. TorsinA is found in Lewy bodies in human PD, and can suppress toxicity in cellular and invertebrate models of PD. Here, we evaluated the neuroprotective properties of torsinA in mouse models of PD based on intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as recombinant adeno associated virus (rAAV) induced overexpression of alpha-synuclein (α-syn). Using either transgenic mice with overexpression of human torsinA (hWT mice) or mice in which torsinA expression was induced using an rAAV vector, we found no evidence for protection against acute MPTP intoxication. Similarly, genetic deletion of the endogenous mouse gene for torsinA (Dyt1) using an rAAV delivered Cre recombinase did not enhance the vulnerability of dopaminergic neurons to MPTP. Overexpression of α-syn using rAAV in the mouse substantia nigra lead to a loss of TH positive neurons six months after administration, and no difference in the degree of loss was observed between transgenic animals expressing forms of torsinA and wild type controls. Collectively, we did not observe evidence for a protective effect of torsinA in the mouse models we examined. Each of these models has limitations, and there is no single model with established predictive value with respect to the human disease. Nevertheless, these data do seem to support the view that torsinA is unlikely to be successfully translated as a target of therapy for human PD.  相似文献   

5.
Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase 3 family, is activated by oxidative stress. The death-signaling pathway mediated by ASK1 is inhibited by DJ-1, which is linked to recessively inherited Parkinson''s disease (PD). Considering that DJ-1 deficiency exacerbates the toxicity of the mitochondrial complex I inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we sought to investigate the direct role and mechanism of ASK1 in MPTP-induced dopamine neuron toxicity. In the present study, we found that MPTP administration to wild-type mice activates ASK1 in the midbrain. In ASK1 null mice, MPTP-induced motor impairment was less profound, and striatal dopamine content and nigral dopamine neuron counts were relatively preserved compared to wild-type littermates. Further, microglia and astrocyte activation seen in wild-type mice challenged with MPTP was markedly attenuated in ASK1−/− mice. These data suggest that ASK1 is a key player in MPTP-induced glial activation linking oxidative stress with neuroinflammation, two well recognized pathogenetic factors in PD. These findings demonstrate that ASK1 is an important effector of MPTP-induced toxicity and suggest that inhibiting this kinase is a plausible therapeutic strategy for protecting dopamine neurons in PD.  相似文献   

6.
Parkinson's disease (PD) is a progressive movement disorder resulting from the death of dopaminergic neurons in the substantia nigra. Neurotoxin-based models of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recapitulate the neurological features of the disease, triggering a cascade of deleterious events through the activation of the c-Jun N-terminal kinase (JNK). The molecular mechanisms underlying the regulation of JNK activity under cellular stress conditions involve the activation of several upstream kinases along with the fine-tuning of different endogenous JNK repressors. Glutathione S-transferase pi (GSTP), a phase II detoxifying enzyme, has been shown to inhibit JNK-activated signaling by protein-protein interactions, preventing c-Jun phosphorylation and the subsequent trigger of the cell death cascade. Here, we use C57BL/6 wild-type and GSTP knockout mice treated with MPTP to evaluate the regulation of JNK signaling by GSTP in both the substantia nigra and the striatum. The results presented herein show that GSTP knockout mice are more susceptible to the neurotoxic effects of MPTP than their wild-type counterparts. Indeed, the administration of MPTP induces a progressive demise of nigral dopaminergic neurons together with the degeneration of striatal fibers at an earlier time-point in the GSTP knockout mice when compared to the wild-type mice. Also, MPTP treatment leads to increased p-JNK levels and JNK catalytic activity in both wild-type and GSTP knockout mice midbrain and striatum. Moreover, our results demonstrate that in vivo GSTP acts as an endogenous regulator of the MPTP-induced cellular stress response by controlling JNK activity through protein-protein interactions.  相似文献   

7.
Jeon S  Kim YJ  Kim ST  Moon W  Chae Y  Kang M  Chung MY  Lee H  Hong MS  Chung JH  Joh TH  Lee H  Park HJ 《Proteomics》2008,8(22):4822-4832
Acupuncture is frequently used as an alternative therapy for Parkinson's disease (PD), and it attenuates dopaminergic (DA) neurodegeneration in the substantia nigra (SN) in PD animal models. Using proteomic analysis, we investigated whether acupuncture alters protein expression in the SN to favor attenuation of neuronal degeneration. In C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day), intraperitoneal (i.p.) for 5 days, 2 or 100 Hz electroacupuncture (EA) was applied at the effective and specific acupoint, GB34, once a day for 12 consecutive days from the first MPTP treatment. Both treatments in MPTP mice led to restoration of behavioral impairment and rescued tyrosine hydroxylase (TH)-positive DA neurodegeneration. Using peptide fingerprinting MS, we identified changes in 22 proteins in the SN following MPTP treatment, and nine of these proteins were normalized by EA. They were involved in cell death regulation, inflammation, or restoration from damage. The levels of cyclophilin A (CypA), which is a neuroprotective agent, were unchanged by MPTP treatment but were increased in MPTP-EA mice. These results suggest that acupoint GB34-specific EA changes protein expression profiles in the SN in favor of DA neuronal survival in MPTP-treated mice, and that EA treatment may be an effective therapy for PD patients.  相似文献   

8.
Oxidative damage in dopaminergic neurons of the substantia nigra plays an important role in the pathogenesis of Parkinson's disease. Glucose-6-phosphate dehydrogenase (G6PD) is a key protective enzyme responsible for maintaining adequate levels of the major cellular reducing agent NADPH. We have previously shown that over-expression of G6PD in dopaminergic neurons of the substantia nigra results in resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice. In order to further examine this neuroprotective effect, a comparative proteomic study of the ventral mesencephalon (containing substantia nigra) and the striatum between wild-type and G6PD over-expressing mice was carried out. In addition to the protein level, over-expression of G6PD in the transgenic animals was also confirmed by determination of mRNA and enzymatic activity. Proteins with differential expression were mainly involved in antioxidant defense, detoxification and synaptic function, as demonstrated by gene ontology analysis. Hence, the changes in the nigrostriatal protein profile could partially explain the protection against MPTP-induced neuronal damage, and could also lead to new potential targets for antioxidant pharmacological intervention.  相似文献   

9.
The noradrenergic neurons of the locus coeruleus (LC) are damaged in Parkinson's disease (PD). Neurotoxin ablation of the LC noradrenergic neurons has been shown to exacerbate the dopaminergic toxicity of MPTP, suggesting that the noradrenergic system protects dopamine neurons. We utilized mice that exhibit elevated synaptic noradrenaline (NA) by genetically deleting the noradrenaline transporter (NET), a key regulator of the noradrenergic system (NET KO mice). NET KO and wild-type littermates were administered MPTP and striatal dopamine terminal integrity was assessed by HPLC of monoamines, immmunoblotting for dopaminergic markers and tyrosine hydroxylase (TH) immunohistochemistry. MPTP significantly reduced striatal dopamine in wild-type mice, but not in the NET KO mice. To confirm that the protection observed in the NET KO mice was due to the lack of NET, we treated wild-type mice with the specific NET inhibitor, nisoxetine, and then challenged them with MPTP. Nisoxetine conferred protection to the dopaminergic system. These data indicate that NA can modulate MPTP toxicity and suggest that manipulation of the noradrenergic system may have therapeutic value in PD.  相似文献   

10.
Mitochondrial structural and functional alterations appear to play to an important role in the pathogenesis of Alzheimer's disease (AD). In the present study, we used a quantitative comparative proteomic profiling approach to analyze changes in the mitochondrial proteome in AD. A triple transgenic mouse model of AD (3xTg-AD) which harbors mutations in three human transgenes, APP(Swe), PS1(M146V) and Tau(P301L), was used in these experiments. Quantitative differences in the mitochondrial proteome between the cerebral cortices of 6-month-old male 3xTg-AD and non-transgenic mice were determined by using two-dimensional difference gel electrophoresis (2D-DIGE) and tandem mass spectrometry. We identified 23 different proteins whose expression levels differed significantly between triple transgenic and non-transgenic mitochondria. Both down-regulated and up-regulated mitochondrial proteins were observed in transgenic AD cortices. Proteins which were dysregulated in 3xTg-AD cortices functioned in a wide variety of metabolic pathways, including the citric acid cycle, oxidative phosphorylation, pyruvate metabolism, glycolysis, oxidative stress, fatty acid oxidation, ketone body metabolism, ion transport, apoptosis, and mitochondrial protein synthesis. These alterations in the mitochondrial proteome of the cerebral cortices of triple transgenic AD mice occurred before the development of significant amyloid plaque and neurofibrillary tangles, indicating that mitochondrial dysregulation is an early event in AD.  相似文献   

11.
ObjectiveParkinson’s disease (PD) is a common neurodegenerative disease. This study aimed to investigate the effects of the R form of α-lipoic acid (RLA) in cellular models of PD induced by 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).MethodsCell viability and apoptosis were detected using CCK8 and Annexin V-FITC assays, respectively. Intracellular reactive oxygen species (ROS) were detected by fluorescence staining. ELISA assays were performed to detect the levels of dopamine and α-synuclein. To evaluate the effects of RLA on mitochondrial function, cytotoxicity, ATP levels, and mitochondrial gene expression were assayed. Additionally, the expression levels of autophagy-related proteins, including Parkin, PINK1, p62, ATG12, and LC3, were analyzed by western blot, and cell autophagy was visualized by immunofluorescence.ResultsRLA increased cell viability and decreased apoptosis, intracellular ROS, and cytotoxicity, and induced cell autophagy in PD models induced by 6-OHDA and MPTP. RLA also reversed the decreased dopamine and increased α-synuclein expression induced by 6-OHDA and MPTP. The mitochondrial regulatory protein PGC-1α was significantly up-regulated by RLA. The expression levels of autophagy-related proteins, including Parkin, PINK1, p62, and ATG12, were down-regulated after RLA treatment, while LC3 expression was up-regulated.ConclusionsRLA has a protective effect against cellular damage induced by 6-OHDA and MPTP. The neuroprotective mechanism of RLA may be associated with improvement of mitochondrial function and autophagy. Therefore, RLA may serve as a promising potential adjuvant for PD treatment.  相似文献   

12.
Mutations in alpha-synuclein cause a form of familial Parkinson's disease (PD), and wild-type alpha-synuclein is a major component of the intraneuronal inclusions called Lewy bodies, a pathological hallmark of PD. These observations suggest a pathogenic role for alpha-synuclein in PD. Thus far, however, little is known about the importance of alpha-synuclein in the nigral dopaminergic pathway in either normal or pathological situations. Herein, we studied this question by assessing the expression of synuclein-1, the rodent homologue of human alpha-synuclein, in both normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. In normal mice, detectable levels of synuclein mRNA and protein were seen in all brain regions studied and especially in ventral midbrain. In the latter, there was a dense synuclein-positive nerve fiber network, which predominated over the substantia nigra, and only few scattered synuclein-positive neurons. After a regimen of MPTP that kills dopaminergic neurons by apoptosis, synuclein mRNA and protein levels were increased significantly in midbrain extracts; the time course of these changes paralleled that of MPTP-induced dopaminergic neurodegeneration. In these MPTP-injected mice, there was also a dramatic increase in the number of synuclein-immunoreactive neurons exclusively in the substantia nigra pars compacta; all synuclein-positive neurons were tyrosine hydroxylase-positive, but none coexpressed apoptotic features. These data indicate that synuclein is highly expressed in the nigrostriatal pathway of normal mice and that it is up-regulated following MPTP-induced injury. In light of the synuclein alterations, it can be suggested that, by targeting this protein, one may modulate MPTP neurotoxicity and, consequently, open new therapeutic avenues for PD.  相似文献   

13.
Approximately, 7–10 million people in the world suffer from Parkinson's disease (PD). Recently, increasing evidence has suggested the protective effect of estrogens against nigrostriatal dopaminergic damage in PD. In this study, we investigated whether estrogen affects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral impairment in estrogen receptor alpha (ERα)-deficient mice. MPTP (15 mg/kg, four times with 1.5-h interval)-induced dopaminergic neurodegeneration was evaluated in ERα wild-type (WT) and knockout (KO) mice. Larger dopamine depletion, behavioral impairments (Rotarod test, Pole test, and Gait test), activation of microglia and astrocytes, and neuroinflammation after MPTP injection were observed in ERα KO mice compared to those in WT mice. Immunostaining for tyrosine hydroxylase (TH) after MPTP injection showed fewer TH-positive neurons in ERα KO mice than WT mice. Levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC, metabolite of dopamine) were also lowered in ERα KO mice after MPTP injection. Interestingly, a higher immunoreactivity for monoamine oxidase (MAO) B was found in the substantia nigra and striatum of ERα KO mice after MPTP injection. We also found an increased activation of p38 kinase (which positively regulates MAO B expression) in ERα KO mice. In vitro estrogen treatment inhibited neuroinflammation in 1-methyl-4-phenyl pyridium (MPP +)-treated cultured astrocyte cells; however, these inhibitory effects were removed by p38 inhibitor. These results indicate that ERα might be important for dopaminergic neuronal survival through inhibition of p38 pathway.  相似文献   

14.
The I93M mutation in ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) was reported in one German family with autosomal dominant Parkinson's disease (PD). The causative role of the mutation has, however, been questioned. We generated transgenic (Tg) mice carrying human UCHL1 under control of the PDGF-B promoter; two independent lines were generated with the I93M mutation (a high- and low-expressing line) and one line with wild-type human UCH-L1. We found a significant reduction in the dopaminergic neurons in the substantia nigra and the dopamine content in the striatum in the high-expressing I93M Tg mice as compared with non-Tg mice at 20 weeks of age. Although these changes were absent in the low-expressing I93M Tg mice, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment profoundly reduced dopaminergic neurons in this line as compared with wild-type Tg or non-Tg mice. Abnormal neuropathologies were also observed, such as silver staining-positive argyrophilic grains in the perikarya of degenerating dopaminergic neurons, in I93M Tg mice. The midbrains of I93M Tg mice contained increased amounts of insoluble UCH-L1 as compared with those of non-Tg mice, perhaps resulting in a toxic gain of function. Collectively, our data represent in vivo evidence that expression of UCHL1(I93M) leads to the degeneration of dopaminergic neurons.  相似文献   

15.

Background

To characterize changes in global protein expression in kidneys of transgenic rats overexpressing human selenoprotein M (SelM) in response to increased bioabivility of selenium (Sel), total proteins extracted from kidneys of 10-week-old CMV/hSelM Tg and wild-type rats were separated by 2-dimensional gel electrophoresis and measured for changes in expression.

Results

Ten and three proteins showing high antioxidant enzymatic activity were up- and down-regulated, respectively, in SelM-overexpressing CMV/hSelM Tg rats compared to controls based on an arbitrary 2-fold difference. Up-regulated proteins included LAP3, BAIAP2L1, CRP2, CD73 antigen, PDGF D, KIAA143 homolog, PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas down-regulated proteins included ALKDH3, rMCP-3, and STC-1. After Sel treatment, five of the up-regulated proteins were significantly increased in expression in wild-type rats, whereas there were no changes in CMV/hSelM Tg rats. Only two of the down-regulated proteins showed reduced expression in wild-type and Tg rats after Sel treatment.

Conclusions

These results show the primary novel biological evidences that new functional protein groups and individual proteins in kidneys of Tg rats relate to Sel biology including the response to Sel treatment and SelM expression.  相似文献   

16.
Parkinson's disease (PD) patients frequently reveal deficit in cognitive functions during the early stage in PD. The dopaminergic neurotoxin, MPTP-induced neurodegeneration causes an injury of the basal ganglia and is associated with PD-like behaviors. In this study, we demonstrated that deficits in cognitive functions in MPTP-treated mice were associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and impaired long-term potentiation (LTP) induction in the hippocampal CA1 region. Mice were injected once a day for 5days with MPTP (25mg/kg i.p.). The impaired motor coordination was observed 1 or 2week after MPTP treatment as assessed by rota-rod and beam-walking tasks. In immunoblotting analyses, the levels of tyrosine hydroxylase protein and CaMKII autophosphorylation in the striatum were significantly decreased 1week after MPTP treatment. By contrast, deficits of cognitive functions were observed 3-4weeks after MPTP treatment as assessed by novel object recognition and passive avoidance tasks but not Y-maze task. Impaired LTP in the hippocampal CA1 region was also observed in MPTP-treated mice. Concomitant with impaired LTP induction, CaMKII autophosphorylation was significantly decreased 3weeks after MPTP treatment in the hippocampal CA1 region. Finally, the reduced CaMKII autophosphorylation was closely associated with reduced AMPA-type glutamate receptor subunit 1 (GluR1; Ser-831) phosphorylation in the hippocampal CA1 region of MPTP-treated mice. Taken together, decreased CaMKII activity with concomitant impaired LTP induction in the hippocampus likely account for the learning disability observed in MPTP-treated mice.  相似文献   

17.
Alcohol induces degeneration of neurons and inhibits neurogenesis in the brain. Small heat shock proteins are able to protect neurons in cerebral ischemia and oxidative stress. In this study, we investigated the neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic ethanol administrations using transgenic mice overexpressing the human Hsp27 protein. Transgenic mice and wild-type littermates were injected with 2 g/kg ethanol intraperitoneally, and then motor coordination and muscle strength were analyzed using different behavioral tests, such as footprint analysis, balance beam, and inverted screen tests. Ethanol-injected transgenic mice showed similar footprints to control saline-injected mice, did not fall of the beam, and were able to climb to the top of the inverted screen, while wild-type mice showed ataxia and incoordination after ethanol injection. The effect of Hsp27 on chronic ethanol consumption was also investigated. Drinking water of mice was replaced by a 20% ethanol solution for 5 weeks, and then brain sections were stained with Fluoro Jade C staining. We found significantly lesser amount of degenerating neurons in the brain of ethanol-drinking transgenic mice compared to wild-type mice. We conclude that Hsp27 can protect neurons against the acute and chronic toxic effects of ethanol.  相似文献   

18.
Bacterial lipopolysaccharide (LPS) is an effective activator of the components of innate immunity. It has been shown that polyamines and their metabolic enzymes affect the LPS-induced immune response by modulating both pro- and anti-inflammatory actions. On the other hand, LPS causes changes in cellular polyamine metabolism. In this study, the LPS-induced inflammatory response in spermidine/spermine N(1)-acetyltransferase overexpressing transgenic mice (SSAT mice) was analyzed. In liver and kidneys, LPS enhanced the activity of the polyamine biosynthetic enzyme ornithine decarboxylase and increased the intracellular putrescine content in both SSAT overexpressing and wild-type mice. In survival studies, the enhanced polyamine catabolism and concomitantly altered cellular polyamine pools in SSAT mice did not affect the LPS-induced mortality of these animals. However, in the acute phase of LPS-induced inflammatory response, the serum levels of proinflammatory cytokines interleukin-1β and interferon-γ were significantly reduced and, on the contrary, anti-inflammatory cytokine interleukin-10 was significantly increased in the sera of SSAT mice compared with the wild-type animals. In addition, hepatic acute-phase proteins C-reactive protein, haptoglobin and α(1)-acid glycoprotein were expressed in higher amounts in SSAT mice than in the wild-type animals. In summary, the study suggests that SSAT overexpression obtained in SSAT mice enhances the anti-inflammatory actions in the acute phase of LPS-induced immune response.  相似文献   

19.
20.
Human immunodeficiency virus (HIV)-1 causes lung disease by increasing the host's susceptibility to pathogens. HIV-1 also causes an increase in systemic oxidative/nitrosative stress, perhaps enhancing the deleterious effects of secondary infections. Here we examined the ability of HIV-1 proteins to increase lung oxidative/nitrosative stress after lipopolysaccharide (LPS) (endotoxin) administration in an HIV-1 transgenic mouse model. Lung oxidative/nitrosative stress biomarkers studied 3 and 6 h after LPS administration were as follows: lung edema, tissue superoxide, NO metabolites, nitrotyrosine, hydrogen peroxide, and bronchoalveolar lavage fluid (BALF) glutathione (GSH). Blood serum cytokine levels were quantified to verify immune function of our nonimmunocompromised animal model. Results indicate that 3 h after LPS administration, HIV-1 transgenic mouse lung tissue has significantly greater edema and superoxide. Furthermore, NO metabolites are significantly elevated in HIV-1 transgenic mouse BALF, lung tissue, and blood plasma compared with those of wild-type mice. HIV-1 transgenic mice also produce significantly greater lung nitrotyrosine and hydrogen peroxide than wild-type mice. In addition, HIV-1 transgenic mice produce significantly less BALF GSH than wild-type mice 3 h after LPS treatment. Without treatment, serum cytokine levels are similar for HIV-1 transgenic and wild-type mice. After treatment, serum cytokine levels are significantly elevated in both HIV-1 transgenic and wild-type mice. Therefore, HIV-1 transgenic mice have significantly greater lung oxidative/nitrosative stress after endotoxin administration than wild-type mice, independent of immune function. These results indicate that HIV-1 proteins may increase pulmonary complications subsequent to a secondary infection by altering the lung redox potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号