首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fan H  Periole X  Mark AE 《Proteins》2012,80(7):1744-1754
The efficiency of using a variant of Hamiltonian replica‐exchange molecular dynamics (Chaperone H‐replica‐exchange molecular dynamics [CH‐REMD]) for the refinement of protein structural models generated de novo is investigated. In CH‐REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH‐REMD approach sampled structures in which the root‐mean‐square deviation (RMSD) of secondary structure elements (SSE‐RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near‐native conformations was also examined. Little correlation between the SSE‐RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE‐RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced‐sampling techniques such as CH‐REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near‐native structures are still needed. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to assess the efficiency of the ROSETTA method for ab initio protein structure prediction. For each protein, four models generated using the ROSETTA procedure were simulated for periods of between 5 and 400 nsec in explicit solvent, under identical conditions. In addition, the experimentally determined structure and the experimentally derived structure in which the side chains of all residues had been deleted and then regenerated using the WHATIF program were simulated and used as controls. A significant improvement in the deviation of the model structures from the experimentally determined structures was observed in several cases. In addition, it was found that in certain cases in which the experimental structure deviated rapidly from the initial structure in the simulations, indicating internal strain, the structures were more stable after regenerating the side-chain positions. Overall, the results indicate that molecular dynamics simulations on a tens to hundreds of nanoseconds time scale are useful for the refinement of homology or ab initio models of small to medium-size proteins.  相似文献   

3.
In this study, we address the problem of local quality assessment in homology models. As a prerequisite for the evaluation of methods for predicting local model quality, we first examine the problem of measuring local structural similarities between a model and the corresponding native structure. Several local geometric similarity measures are evaluated. Two methods based on structural superposition are found to best reproduce local model quality assessments by human experts. We then examine the performance of state-of-the-art statistical potentials in predicting local model quality on three qualitatively distinct data sets. The best statistical potential, DFIRE, is shown to perform on par with the best current structure-based method in the literature, ProQres. A combination of different statistical potentials and structural features using support vector machines is shown to provide somewhat improved performance over published methods.  相似文献   

4.
Lu H  Skolnick J 《Biopolymers》2003,70(4):575-584
Recently ab initio protein structure prediction methods have advanced sufficiently so that they often assemble the correct low resolution structure of the protein. To enhance the speed of conformational search, many ab initio prediction programs adopt a reduced protein representation. However, for drug design purposes, better quality structures are probably needed. To achieve this refinement, it is natural to use a more detailed heavy atom representation. Here, as opposed to costly implicit or explicit solvent molecular dynamics simulations, knowledge-based heavy atom pair potentials were employed. By way of illustration, we tried to improve the quality of the predicted structures obtained from the ab initio prediction program TOUCHSTONE by three methods: local constraint refinement, reduced predicted tertiary contact refinement, and statistical pair potential guided molecular dynamics. Sixty-seven predicted structures from 30 small proteins (less than 150 residues in length) representing different structural classes (alpha, beta, alpha;/beta) were examined. In 33 cases, the root mean square deviation (RMSD) from native structures improved by more than 0.3 A; in 19 cases, the improvement was more than 0.5 A, and sometimes as large as 1 A. In only seven (four) cases did the refinement procedure increase the RMSD by more than 0.3 (0.5) A. For the remaining structures, the refinement procedures changed the structures by less than 0.3 A. While modest, the performance of the current refinement methods is better than the published refinement results obtained using standard molecular dynamics.  相似文献   

5.
Despite GPCRs sharing a common seven helix bundle, analysis of the diverse crystallographic structures available reveal specific features that might be relevant for ligand design. Despite the number of crystallographic structures of GPCRs steadily increasing, there are still challenges that hamper the availability of new structures. In the absence of a crystallographic structure, homology modeling remains one of the important techniques for constructing 3D models of proteins. In the present study we investigated the use of molecular dynamics simulations for the refinement of GPCRs models constructed by homology modeling. Specifically, we investigated the relevance of template selection, ligand inclusion as well as the length of the simulation on the quality of the GPCRs models constructed. For this purpose we chose the crystallographic structure of the rat muscarinic M3 receptor as reference and constructed diverse atomistic models by homology modeling, using different templates. Specifically, templates used in the present work include the human muscarinic M2; the more distant human histamine H1 and the even more distant bovine rhodopsin as shown in the GPCRs phylogenetic tree. We also investigated the use or not of a ligand in the refinement process. Hence, we conducted the refinement process of the M3 model using the M2 muscarinic as template with tiotropium or NMS docked in the orthosteric site and compared with the results obtained with a model refined without any ligand bound.  相似文献   

6.
A novel method for the refinement of misfolded protein structures is proposed in which the properties of the solvent environment are oscillated in order to mimic some aspects of the role of molecular chaperones play in protein folding in vivo. Specifically, the hydrophobicity of the solvent is cycled by repetitively altering the partial charges on solvent molecules (water) during a molecular dynamics simulation. During periods when the hydrophobicity of the solvent is increased, intramolecular hydrogen bonding and secondary structure formation are promoted. During periods of increased solvent polarity, poorly packed regions of secondary structures are destabilized, promoting structural rearrangement. By cycling between these two extremes, the aim is to minimize the formation of long-lived intermediates. The approach has been applied to the refinement of structural models of three proteins generated by using the ROSETTA procedure for ab initio structure prediction. A significant improvement in the deviation of the model structures from the corresponding experimental structures was observed. Although preliminary, the results indicate computationally mimicking some functions of molecular chaperones in molecular dynamics simulations can promote the correct formation of secondary structure and thus be of general use in protein folding simulations and in the refinement of structural models of small- to medium-size proteins.  相似文献   

7.
Kimura SR  Tebben AJ  Langley DR 《Proteins》2008,71(4):1919-1929
Homology modeling of G protein-coupled receptors is becoming a widely used tool in drug discovery. However, unrefined models built using the bovine rhodopsin crystal structure as the template, often have binding sites that are too small to accommodate known ligands. Here, we present a novel systematic method to refine model active sites based on a pressure-guided molecular dynamics simulation. A distinct advantage of this approach is the ability to introduce systematic perturbations in model backbone atoms in addition to side chain adjustments. The method is validated on two test cases: (1) docking of retinal into an MD-relaxed structure of opsin and (2) docking of known ligands into a homology model of the CCR2 receptor. In both cases, we show that the MD expansion algorithm makes it possible to dock the ligands in poses that agree with the crystal structure or mutagenesis data.  相似文献   

8.
Protein model refinement has been an essential part of successful protein structure prediction. Molecular dynamics simulation-based refinement methods have shown consistent improvement of protein models. There had been progress in the extent of refinement for a few years since the idea of ensemble averaging of sampled conformations emerged. There was little progress in CASP12 because conformational sampling was not sufficiently diverse due to harmonic restraints. During CASP13, a new refinement method was tested that achieved significant improvements over CASP12. The new method intended to address previous bottlenecks in the refinement problem by introducing new features. Flat-bottom harmonic restraints replaced harmonic restraints, sampling was performed iteratively, and a new scoring function and selection criteria were used. The new protocol expanded conformational sampling at reduced computational costs. In addition to overall improvements, some models were refined significantly to near-experimental accuracy.  相似文献   

9.
M. F. Thorpe  S. Banu Ozkan 《Proteins》2015,83(12):2279-2292
The most successful protein structure prediction methods to date have been template‐based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug‐design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr‐REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native‐like structures from a template and to provide a set of persistent contacts to be employed during re‐folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. Proteins 2015; 83:2279–2292. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
When researchers build high-quality models of protein structure from sequence homology, it is today common to use several alternative target-template alignments. Several methods can, at least in theory, utilize information from multiple templates, and many examples of improved model quality have been reported. However, to our knowledge, thus far no study has shown that automatic inclusion of multiple alignments is guaranteed to improve models without artifacts. Here, we have carried out a systematic investigation of the potential of multiple templates to improving homology model quality. We have used test sets consisting of targets from both recent CASP experiments and a larger reference set. In addition to Modeller and Nest, a new method (Pfrag) for multiple template-based modeling is used, based on the segment-matching algorithm from Levitt's SegMod program. Our results show that all programs can produce multi-template models better than any of the single-template models, but a large part of the improvement is simply due to extension of the models. Most of the remaining improved cases were produced by Modeller. The most important factor is the existence of high-quality single-sequence input alignments. Because of the existence of models that are worse than any of the top single-template models, the average model quality does not improve significantly. However, by ranking models with a model quality assessment program such as ProQ, the average quality is improved by approximately 5% in the CASP7 test set.  相似文献   

11.
The interaction of ZnO nanoparticles with biological molecules such as proteins is one of the most important and challenging problems in molecular biology. Molecular dynamics (MD) simulations are useful technique for understating the mechanism of various interactions of proteins and nanoparticles. In the present work, the interaction mechanism of insulin with ZnO nanoparticles was studied. Simulation methods including MD and replica exchange molecular dynamics (REMD) and their conditions were surveyed. According to the results obtained by REMD simulation, it was found that insulin interacts with ZnO nanoparticle surface via its polar and charged amino acids. Unfolding insulin at ZnO nanoparticle surface, the terminal parts of its chains play the main role. Due to the linkage between chain of insulin and chain of disulfide bonds, opposite directional movements of N terminal part of chain A (toward nanoparticle surface) and N termini of chain B (toward solution) make insulin unfolding. In unfolding of insulin at this condition, its helix structures convert to random coils at terminal parts chains.  相似文献   

12.
Most crystallized homo‐oligomeric ion channels are highly symmetric, which dramatically decreases conformational space and facilitates building homology models (HMs). However, in molecular dynamics (MD) simulations channels deviate from ideal symmetry and accumulate thermal defects, which complicate the refinement of HMs using MD. In this work we evaluate the ability of symmetry constrained MD simulations to improve HMs accuracy, using an approach conceptually similar to Critical Assessment of techniques for protein Structure Prediction (CASP) competition: build HMs of channels with known structure and evaluate the efficiency of proposed methods in improving HMs accuracy (measured as deviation from experimental structure). Results indicate that unrestrained MD does not improve the accuracy of HMs, instantaneous symmetrization improves accuracy but not stability of HMs during subsequent unrestrained MD, while gradually imposing symmetry constraints improves both accuracy (by 5–50%) and stability of HMs. Moreover, accuracy and stability are strongly correlated, making stability a reliable criterion in predicting the accuracy of new HMs. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
WW domain proteins are usually regarded as simple models for understanding the folding mechanism of β-sheet. CC45 is an artificial protein that is capable of folding into the same structure as WW domain. In this article, the replica exchange molecular dynamics simulations are performed to investigate the folding mechanism of CC45. The analysis of thermal stability shows that β-hairpin 1 is more stable than β-hairpin 2 during the unfolding process. Free energy analysis shows that the unfolding of this protein substantially proceeds through solvating the smaller β-hairpin 2, followed by the unfolding of β-hairpin 1. We further propose the unfolding process of CC45 and the folding mechanism of two β-hairpins. These results are similar to the previous folding studies of formin binding protein 28 (FBP28). Compared with FBP28, it is found that CC45 has more aromatic residues in N-terminal loop, and these residues contact with C-terminal loop to form the outer hydrophobic core, which increases the stability of CC45. Knowledge about the stability and folding behaviour of CC45 may help in understanding the folding mechanisms of the β-sheet and in designing new WW domains.  相似文献   

14.
Stumpff-Kane AW  Maksimiak K  Lee MS  Feig M 《Proteins》2008,70(4):1345-1356
Protein structure refinement from comparative models with the goal of predicting structures at near-experimental accuracy remains an unsolved problem. Structure refinement might be achieved with an iterative protocol where the most native-like structure from a set of decoys generated from an initial model in one cycle is used as the starting structure for the next cycle. Conformational sampling based on the coarse-grained SICHO model, atomic level of detail molecular dynamics simulations, and normal-mode analysis is compared in the context of such a protocol. All of the sampling methods can achieve significant refinement close to experimental structures, although the distribution of structures and the ability to reach native-like structures differs greatly. Implications for the practical application of such sampling methods and the requirements for scoring functions in an iterative refinement protocol are analyzed in the context of theoretical predictions for the distribution of protein-like conformations with a random sampling protocol.  相似文献   

15.
Bacterial chaperonin, GroEL, together with its co-chaperonin, GroES, facilitates the folding of a variety of polypeptides. Experiments suggest that GroEL stimulates protein folding by multiple cycles of binding and release. Misfolded proteins first bind to an exposed hydrophobic surface on GroEL. GroES then encapsulates the substrate and triggers its release into the central cavity of the GroEL/ES complex for folding. In this work, we investigate the possibility to facilitate protein folding in molecular dynamics simulations by mimicking the effects of GroEL/ES namely, repeated binding and release, together with spatial confinement. During the binding stage, the (metastable) partially folded proteins are allowed to attach spontaneously to a hydrophobic surface within the simulation box. This destabilizes the structures, which are then transferred into a spatially confined cavity for folding. The approach has been tested by attempting to refine protein structural models generated using the ROSETTA procedure for ab initio structure prediction. Dramatic improvements in regard to the deviation of protein models from the corresponding experimental structures were observed. The results suggest that the primary effects of the GroEL/ES system can be mimicked in a simple coarse-grained manner and be used to facilitate protein folding in molecular dynamics simulations. Furthermore, the results support the assumption that the spatial confinement in GroEL/ES assists the folding of encapsulated proteins.  相似文献   

16.
Li W  Tang Y  Liu H  Cheng J  Zhu W  Jiang H 《Proteins》2008,71(2):938-949
Cytochrome P450 (P450) 2J2 catalyzes epoxidation of arachidonic acid to eicosatrienoic acids, which are related to a variety of diseases such as coronary artery disease, hypertension, and carcinogenesis. Recent experimental data also suggest that P450 2J2 could be a novel biomarker and a potential target for cancer therapy. However, the active site topology and substrate specificity of this enzyme remain unclear. In this study, a three-dimensional model of human P450 2J2 was first constructed on the basis of the crystal structure of human P450 2C9 in complex with a substrate using homology modeling method, and refined by molecular dynamics simulation. Flexible docking approaches were then employed to dock four ligands into the active site of P450 2J2 in order to probe the ligand-binding modes. By analyzing the results, active site architecture and certain key residues responsible for substrate specificity were identified on the enzyme, which might be very helpful for understanding the enzyme's biological role and providing insights for designing novel inhibitors of P450 2J2.  相似文献   

17.
A refinement protocol based on physics‐based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge‐based or implicit membrane‐based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid‐facing residues. Scoring with knowledge‐based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane‐based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models.  相似文献   

18.
We present loop structure prediction results of the intracellular and extracellular loops of four G‐protein‐coupled receptors (GPCRs): bovine rhodopsin (bRh), the turkey β1‐adrenergic (β1Ar), the human β2‐adrenergic (β2Ar) and the human A2a adenosine receptor (A2Ar) in perturbed environments. We used the protein local optimization program, which builds thousands of loop candidates by sampling rotamer states of the loops' constituent amino acids. The candidate loops are discriminated between with our physics‐based, all‐atom energy function, which is based on the OPLS force field with implicit solvent and several correction terms. For relevant cases, explicit membrane molecules are included to simulate the effect of the membrane on loop structure. We also discuss a new sampling algorithm that divides phase space into different regions, allowing more thorough sampling of long loops that greatly improves results. In the first half of the paper, loop prediction is done with the GPCRs' transmembrane domains fixed in their crystallographic positions, while the loops are built one‐by‐one. Side chains near the loops are also in non‐native conformations. The second half describes a full homology model of β2Ar using β1Ar as a template. No information about the crystal structure of β2Ar was used to build this homology model. We are able to capture the architecture of short loops and the very long second extracellular loop, which is key for ligand binding. We believe this the first successful example of an RMSD validated, physics‐based loop prediction in the context of a GPCR homology model. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Hornak V  Simmerling C 《Proteins》2003,51(4):577-590
Prediction and refinement of protein loop structures are important and challenging tasks for which no general solution has been found. In addition to the accuracy of scoring functions, the main problems reside in (1) insufficient statistical sampling and (2) crossing energy barriers that impede conformational rearrangements of the loop. We approach these two issues by using "low-barrier molecular dynamics," a combination of energy smoothing techniques. To address statistical sampling, locally enhanced sampling (LES) is used to produce multiple copies of the loop, thus improving statistics and reducing energy barriers. We introduce a novel extension of LES that can improve local sampling even further through hierarchical subdivision of copies. Even though LES reduces energy barriers, it cannot provide for crossing infinite barriers, which can be problematic when substantial rearrangement of residues is necessary. To permit this kind of loop residue repacking, a "soft-core" potential energy function is introduced, so that atomic overlaps are temporarily allowed. We tested this new combined methodology to a loop in anti-influenza antibody Fab 17/9 (7 residues long) and to another loop in the antiprogesterone antibody DB3 (8 residues). In both cases, starting from random conformations, we were able to locate correct loop structures (including sidechain orientations) with heavy-atom root-mean-square deviation (fit to the nonloop region) of approximately 1.1 A in Fab 17/9 and approximately 1.8 A in DB3. We show that the combination of LES and soft-core potential substantially improves sampling compared to regular molecular dynamics. Moreover, the sampling improvement obtained with this combined approach is significantly better than that provided by either of the two methods alone.  相似文献   

20.
Protein structure refinement is the challenging problem of operating on any protein structure prediction to improve its accuracy with respect to the native structure in a blind fashion. Although many approaches have been developed and tested during the last four CASP experiments, a majority of the methods continue to degrade models rather than improve them. Princeton_TIGRESS (Khoury et al., Proteins 2014;82:794–814) was developed previously and utilizes separate sampling and selection stages involving Monte Carlo and molecular dynamics simulations and classification using an SVM predictor. The initial implementation was shown to consistently refine protein structures 76% of the time in our own internal benchmarking on CASP 7‐10 targets. In this work, we improved the sampling and selection stages and tested the method in blind predictions during CASP11. We added a decomposition of physics‐based and hybrid energy functions, as well as a coordinate‐free representation of the protein structure through distance‐binning distances to capture fine‐grained movements. We performed parameter estimation to optimize the adjustable SVM parameters to maximize precision while balancing sensitivity and specificity across all cross‐validated data sets, finding enrichment in our ability to select models from the populations of similar decoys generated for targets in CASPs 7‐10. The MD stage was enhanced such that larger structures could be further refined. Among refinement methods that are currently implemented as web‐servers, Princeton_TIGRESS 2.0 demonstrated the most consistent and most substantial net refinement in blind predictions during CASP11. The enhanced refinement protocol Princeton_TIGRESS 2.0 is freely available as a web server at http://atlas.engr.tamu.edu/refinement/ . Proteins 2017; 85:1078–1098. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号