首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown in rainbow trout (Oncorhynchus mykiss) that gastric distension induces an instantaneous alpha-adrenoceptor-mediated increase in the dorsal aortic blood pressure (P(da)), with no change in cardiac output (CO), gut blood flow (Q(cma)), or heart rate. To investigate if feeding habits affect these patterns and to compare the differences between gastric distension alone and feeding in the same experimental setting, we used the short-horn sculpin (Myoxocephalus scorpius), an inactive ambush predator with a capacity to eat large meals. An inflatable balloon was placed in the stomach of one group while another group was fed fish meat. When distending the stomach with a volume corresponding to a meal of 8-10% body weight, there is a profound and long-lasting increase in systemic (123 +/- 27%) and gastrointestinal (R(cma); 82 +/- 24%) vascular resistance, leading to an increase in P(da) (19%) without any change in CO or Q(cma). After force-feeding, there is a rapid transient increase in R(cma) (24 +/- 4%) and an even larger P(da) response (53%). There is also a subsequent increase in both CO (28 +/- 8%) and Q(cma) (27 +/- 9%) after 30 min. By 15 h, CO and Q(cma) increase further (41 +/- 11 and 63 +/- 14%, respectively), and this increase persists for up to 60 h. The increase in Q(cma) is mediated via both an increase in CO and a shunting of blood from the systemic circulation via a decrease in R(cma) (34 +/- 7%). In conclusion, the response to mechanical distension of the stomach is similar to what we have described in rainbow trout, and the postprandial gastrointestinal hyperemia is most likely chemically induced.  相似文献   

2.
Conscious sensations in response to gut distensions may be modulated by temporospatial interactions among different stimuli. This study investigated whether symptoms induced by gastric distension may be modified by hydrochloric acid (HCl) gastric infusion and meal ingestion. In nine healthy subjects, fixed pressure (isobaric) and fixed volume (isovolumetric) distensions were performed during continuous (4 ml/min) intragastric saline or HCl infusion, during fasting and after meal ingestion, until the maximal distension step defined as discomfort or a predefined maximal volume. During fasting isobaric distensions, the maximal distension step was significantly decreased during HCl compared with saline. The intragastric volumes were not significantly different, but the wall tension was significantly lower during HCl than saline. HCl increased gastric compliance. Meal ingestion relaxed the stomach and decreased the pressure at the maximal distension step during saline, but HCl did not further decrease it compared with fasting. During isovolumetric distensions, HCl also increased gastric compliance, but in both fasted and fed states it did not modify the maximal distension steps. In conclusion, sensations in response to gastric isobaric distensions, but not to isovolumetric distensions, are influenced by gastric acid infusion and meal ingestion. The effects of HCl might be related to a sensitization of mucosal mechanoreceptors.  相似文献   

3.
The effect of intravenous dopamine infusion (25 and 60 μg per kg and min consecutively) on blood flow distribution in the splanchnic region of anesthetized rabbits was studied applying the microsphere technique. During infusion of the low dose, blood flow increased most markedly in the stomach, less in the pancreas, jejunum and descending colon, and decreased in the spleen. In the stomach the increase was confined to the mucosa-submucosa. Raising the dose of dopamine resulted in a slight fall of arterial blood pressure, a further increase in blood flow through the mucosa-submucosa of the gastric fundus (+493 % as against control), but not through the other tissues studied. In another series, blood flow through the left gastric artery was measured with an electromagnetic flowmeter. The infusion of dopamine produced a dose-dependent increase in regional blood flow, which was inhibited by the dopamine antagonist bulbocapnine. Furthermore, the control blood flow was transiently decreased, and resistance to flow was increased by bulbocapnine. The results indicate that the dopamine-induced vasodilation in the gastrointestinal tract of the rabbit is largely restricted to the gastric circulation and suggest that specific receptors mediating this vasodilation are located in the mucosa-submucosa. It is hypothesized that endogenous dopamine functions as a vasodilatory tissue hormone in the gastric mucosa of the rabbit.  相似文献   

4.
The lung may release prostacyclin (PGI2) in response to humoral or mechanical stimuli. We measured 6 keto-PGF1 alpha as an index of PGI2 production during serotonin (5-HT) infusion, elevated venous pressure (Pv), or increased blood flow (Q) in the isolated canine lower left lung lobe (LLL). Lobar vascular resistance (LVR) was partitioned into arterial (Ra), middle (Rm), and venous (Rv) components by arterial and venous occlusions. The infusion of 55-210 micrograms/min 5-HT (n = 9) was associated with concomitant increases in PGI2 production and dose-related increases in pulmonary arterial pressure (Pa) and LVR. 5-HT increased Ra at each infusion rate, whereas Rm was not changed and Rv was increased only at the highest infusion rate. When Pa was increased by stepwise elevations in Pv from 3.7 to 19.1 cmH2O (n = 8) or by increases in Q from 250 to 507 ml/min (n = 5) to match the Pa increase observed during 5-HT infusion, PGI2 production was not altered. Increases in Pv reduced LVR largely by decreasing Ra, whereas increases in Q reduced LVR without changing Ra, Rm, or Rv. Infusion of 5-HT when Pa was held constant by reduction in blood flow (n = 6) did not increase PGI2. Thus infusion of 5-HT at a normal blood flow rate increased PGI2 formation in the isolated blood-perfused dog lung lobe. The results also suggest that sustained mechanical effects related to increased venous pressure or elevated blood flow are not associated with a sustained elevation of PGI2 formation.  相似文献   

5.
Selective angiography and direct measurements of the arterial pressure in the celiac artery was used to study the influence of bradykinin on the blood circulation in healthy organs in the celiac region in 24 patients. A high sensitivity of the vessels to the action of bradykinin (0.1--10 mkg) was revealed: it decreased the blood pressure, increased the rate of blood flow, increased the diameter of arterial and venous vessels, arterio-venous anastomosis, increased the number of functioning capillaries. No differences were found in the reaction of the vessels of the liver, spleen pancreas, duodenum and the stomach to bradykinin.  相似文献   

6.
Infarction of the lung is uncommon even when both the pulmonary and the bronchial blood supplies are interrupted. We studied the possibility that a tidal reverse pulmonary venous flow is driven by the alternating distension and compression of alveolar and extra-alveolar vessels with the lung volume changes of breathing and also that a pulsatile reverse flow is caused by left atrial pressure transients. We infused SF6, a relatively insoluble inert gas, into the left atrium of anesthetized goats in which we had interrupted the left pulmonary artery and the bronchial circulation. SF6 was measured in the left lung exhalate as a reflection of the reverse pulmonary venous flow. No SF6 was exhaled when the pulmonary veins were occluded. SF6 was exhaled in increasing amounts as left atrial pressure, tidal volume, and ventilatory rates rose during mechanical ventilation. SF6 was not excreted when we increased left atrial pressure transients by causing mitral insufficiency in the absence of lung volume changes (continuous flow ventilation). Markers injected into the left atrial blood reached the alveolar capillaries. We conclude that reverse pulmonary venous flow is driven by tidal ventilation but not by left atrial pressure transients. It reaches the alveoli and could nourish the alveolar tissues when there is no inflow of arterial blood.  相似文献   

7.
Based on observations that as cardiac output (as determined by an artificial pump) was experimentally increased the right atrial pressure decreased, Arthur Guyton and coworkers proposed an interpretation that right atrial pressure represents a back pressure restricting venous return (equal to cardiac output in steady state). The idea that right atrial pressure is a back pressure limiting cardiac output and the associated idea that "venous recoil" does work to produce flow have confused physiologists and clinicians for decades because Guyton's interpretation interchanges independent and dependent variables. Here Guyton's model and data are reanalyzed to clarify the role of arterial and right atrial pressures and cardiac output and to clearly delineate that cardiac output is the independent (causal) variable in the experiments. Guyton's original mathematical model is used with his data to show that a simultaneous increase in arterial pressure and decrease in right atrial pressure with increasing cardiac output is due to a blood volume shift into the systemic arterial circulation from the systemic venous circulation. This is because Guyton's model assumes a constant blood volume in the systemic circulation. The increase in right atrial pressure observed when cardiac output decreases in a closed circulation with constant resistance and capacitance is due to the redistribution of blood volume and not because right atrial pressure limits venous return. Because Guyton's venous return curves have generated much confusion and little clarity, we suggest that the concept and previous interpretations of venous return be removed from educational materials.  相似文献   

8.
Pressure-flow relationships in the ventilated lung have not been previously determined in undelivered fetal sheep. Therefore we studied 11 late-gestation chronically prepared fetal sheep during positive-pressure ventilation with different gas mixtures to determine the roles of mechanical distension and blood gas tensions on pressure-flow relationships in the lung. Ventilation with 3% O2-7% CO2 produced a substantial fall in pulmonary vascular resistance even though arterial blood gases were not changed. Increases in pulmonary arterial PO2 during ventilation were associated with falls in pulmonary vascular resistance beyond that measured during mechanical distension. Decreases in pulmonary arterial PCO2 and associated increases in pH were also associated with falls in pulmonary vascular resistance. Pulmonary blood flow ceased at a pulmonary arterial pressure that exceeded left atrial pressure, indicating that left atrial pressure does not represent the true downstream component of driving pressure through the pulmonary vascular bed. The slope of the driving pressure-flow relationship in the normal mature fetal lamb was therefore different from the ratio of pulmonary arterial pressure to pulmonary arterial flow. We conclude that mechanical ventilation, increased PO2 and decreased PCO2, and/or increased pH has an important influence on the fall in pulmonary vascular resistance elicited by positive pressure in utero ventilation of the fetal lamb and that the downstream driving pressure for pulmonary blood flow exceeds left atrial pressure.  相似文献   

9.
Arterial smooth muscle cells (ASMCs), the predominant cell type within the arterial wall, detect and respond to external mechanical forces. These forces can be derived from blood flow (i.e. pressure and stretch) or from the supporting extracellular matrix (i.e. stiffness and topography). The healthy arterial wall is elastic, allowing the artery to change shape in response to changes in blood pressure, a property known as arterial compliance. As we age, the mechanical forces applied to ASMCs change; blood pressure and arterial wall rigidity increase and result in a reduction in arterial compliance. These changes in mechanical environment enhance ASMC contractility and promote disease-associated changes in ASMC phenotype. For mechanical stimuli to programme ASMCs, forces must influence the cell’s load-bearing apparatus, the cytoskeleton. Comprised of an interconnected network of actin filaments, microtubules and intermediate filaments, each cytoskeletal component has distinct mechanical properties that enable ASMCs to respond to changes within the mechanical environment whilst maintaining cell integrity. In this review, we discuss how mechanically driven cytoskeletal reorganisation programmes ASMC function and phenotypic switching.  相似文献   

10.
Most perfusion techniques rely on mechanical means to provide blood flow to the isolated organ for maintaining its physiological conditions. The approach usually requires a complicated mechanical system with the associated problems of blood type matching and prevention of blood cell damage. This paper describes a gastrointestinal tract perfusion technique that uses the rabbit's own cardiopulmonary system as the autologous blood supply source. The technique allows for the removal of the complete intestinal loop from the abdominal cavity of the rabbit, and maintains its blood circulation through silastic tubing connections of the catheterized portal vein and cranial and caudal mesenteric arteries. An alternative perfusion site that uses the aorta as the arterial blood supply and the vena cava as the venous return also is described. The isolated perfused GI tract may then be placed in a separate test environment for controlled experiments. For an acute animal test, the approach was found to be a convenient alternative to conventional approaches.  相似文献   

11.
The reflex effects of left ventricular distension on venous return, vascular capacitance, vascular resistance, and sympathetic efferent nerve activity were examined in dogs anesthetized with sodium pentobarbital. In addition, the interaction of left ventricular distension and the carotid sinus baroreflex was examined. Vascular capacitance was assessed by measuring changes in systemic blood volume, using extracorporeal circulation with constant cardiac output and constant central venous pressure. Left ventricular distension produced by balloon inflation caused a transient biphasic change in venous return; an initial small increase was followed by a late relatively large decrease. Left ventricular distension increased systemic blood volume by 3.8 +/- 0.6 mL/kg and decreased systemic blood pressure by 27 +/- 2 mmHg (1 mmHg = 133.3 Pa) at an isolated carotid sinus pressure of 50 mmHg. These changes were accompanied by a simultaneous decrease in sympathetic efferent nerve activity. When the carotid sinus pressure was increased to 125 and 200 mmHg, these responses were attenuated. It is suggested that left ventricular mechanoreceptors and carotid baroreceptors contribute importantly to the control of venous return and vascular capacitance.  相似文献   

12.
To investigate the effect of alveolar hypoxia onthe pulmonary blood flow-segmental vascular resistance relationship, wedetermined the longitudinal distribution of vascular resistance whileincreasing blood flow during hyperoxia or hypoxia in perfused catlungs. We measured microvascular pressures by the micropipetteservo-null method, partitioned the pulmonary vessels into threesegments [i.e., arterial (from main pulmonary artery to 30- to50-µm arterioles), venous (from 30- to 50-µm venules to leftatrium), and microvascular (between arterioles and venules)segments] and calculated segmental vascular resistance. Duringhyperoxia, total resistance decreased with increased blood flow becauseof a reduction of microvascular resistance. In contrast, duringhypoxia, not only microvascular resistance but also arterial resistancedecreased with increase of blood flow while venous resistance remainedunchanged. The reduction of arterial resistance was presumably causedby arterial distension induced by an elevated arterial pressure duringhypoxia. We conclude that, during hypoxia, both microvessels andarteries >50 µm in diameter play a role in preventing furtherincreases in total pulmonary vascular resistance with increased bloodflow.

  相似文献   

13.
The purpose of these studies was to determine the reflex responses of the cardiovascular system and central inspiratory activity caused by pulmonary vascular congestion. We used a canine preparation in which the left lung was isolated in situ and could be exposed to a variety of stimuli, including distension of the pulmonary capillaries with blood, without direct mechanical or chemical alterations on the circulation. We found that lung expansion to 30 cmH2O and stimulation of nerve endings of the left lung with capsaicin caused pronounced transient reflex bradycardia (-30 to -50 beats/min) and hypotension (-25 to -40 mmHg) and caused reflex cessation of inspiratory activity. Pressurizing the left pulmonary vessels by injecting blood in volumes sufficient to raise pulmonary transcapillary pressures to 30 mmHg caused no changes in heart rate, systemic arterial pressure, or inspiratory muscle activity. These results lead us to conclude that pulmonary vascular congestion does not stimulate pulmonary C-fibers or any other nerve endings to such a degree as to cause detectable changes in blood pressure, heart rate, or central inspiratory activity. Morphometric analysis revealed distended capillaries engorged with blood, but the alveolar wall surface area was not increased which raises the possibility that expansion of the alveolar membrane may be needed to mechanically initiate the C-fiber reflex.  相似文献   

14.
Surgical intervention was found to intensify circulation in the limb and redistribute the blood flow. Leg lengthening led to arterial inflow limitation due to the magisterial artery strain. The changes were accompanied both by increase of functioning capillaries in number and increase of venous outflow dependence on blood inflow. The decreased after surgery oxygen tension in m. gastrocnemius did not change throughout distraction. The increase of functioning capillaries in number in resting contributed to maintenance of tissue oxygenation in the initial period of distraction, and in case of maximal tissue tensioning hydrostatic pressure increased in the capillaries due to arterial pressure rise. Restoration of the circulation parameters in the fixation period started with an increase of circulation volumetric rate in vessels with preservation of the rest mechanisms of the tissue oxygenation maintenance.  相似文献   

15.
Eight exercise-trained miniature swine were studied during prolonged treadmill runs (100 min) under fasting and preexercise feeding conditions. Each animal ran at identical external work loads that corresponded to 65% of the heart rate reserve (210-220 beats/min) for the two exercise bouts. Cardiac outputs and stroke volumes were higher and heart rates lower for fed than for fasting runs (P less than 0.05). Preexercise feeding did not alter oxygen consumption, core temperature, mean arterial pressure, and arterial-mixed venous oxygen difference during prolonged exercise; however, mixed venous lactate concentration was lower at end exercise than during fasting conditions (1.2 vs. 2.6 mM, P less than 0.05). Microsphere measurements of regional blood flow revealed significantly higher total gastrointestinal flow (23%) for fed than for fasting conditions. Throughout the exercise bout, blood flow to the biceps femoris, semitendinosus, and tibialis anterior muscles was lower in fed than in fasted animals (P less than 0.05). Combined hindlimb muscle blood flow averaged 15 ml.min-1.100 g-1 (18%, P less than 0.05) lower under feeding than fasting run conditions. These findings provide further evidence that cardiovascular reflexes originate in the gut after feeding to increase cardiac output and redistribute a portion of the blood flow away from active muscle to the gastrointestinal tract during prolonged exercise.  相似文献   

16.
Reactive hyperemia (RH) is an abrupt blood flow increase following release from mechanical occlusion of an artery, with restoration of intra-arterial pressure. The mechanism of this postocclusion increase in blood flow in the gut is multifactorial. Relaxation of intestinal resistance vessels, observed during RH, may involve myogenic, metabolic, hormonal and neurogenic factors. Evidence exists that histamine is an important endogenous mediator of various functions of the gut, including blood flow. The vascular effects of histamine in the intestinal circulation are due its agonistic action on histamine H1, H2 and H3 receptors. In the present study the hypothesis was tested that peripheral histamine H3 receptors are involved in the mediation of RH in the intestinal circulation. In anesthetized rats, anterior mesenteric artery blood flow (MBF) was determined with ultrasonic Doppler flowmeter, and arterial pressure (AP) was determined with a transducer. The increase in the volume of blood accumulating during RH (RH-volume), the peak increase of arterial blood flow (RH-peak response) and the duration of the hyperemia (RH-duration) were used to quantify RH after occluding the anterior mesenteric artery for 30, 60 and 120 s. Hyperemia parameters were determined before and after administration of the selective histamine H3 receptor antagonist clobenpropit. Pretreatment with clobenpropit was without any effect on control MBF and AP but significantly reduced most of RH responses. These findings support the hypothesis that histamine H3 receptors do not play any role in the control of intestinal vasculature at basal conditions but these receptors participate in the intestinal hyperemic reaction in response to complete temporal intestinal ischemia.  相似文献   

17.
Arteries exhibit a remarkable ability to adapt to diverse genetic defects and sustained alterations in mechanical loading. For example, changes in blood flow induced wall shear stress tend to control arterial caliber and changes in blood pressure induced circumferential wall stress tend to control wall thickness. We submit, however, that the axial component of wall stress plays a similarly fundamental role in controlling arterial geometry, structure, and function, that is, compensatory adaptations. This observation comes from a review of findings reported in the literature and a comparison of four recent studies from our laboratory that quantified changes in the biaxial mechanical properties of mouse carotid arteries in cases of altered cell-matrix interactions, extracellular matrix composition, blood pressure, or axial extension. There is, therefore, a pressing need to include the fundamental role of axial wall stress in conceptual and theoretical models of arterial growth and remodeling and, consequently, there is a need for increased attention to evolving biaxial mechanical properties in cases of altered genetics and mechanical stimuli.  相似文献   

18.
The effect of surgical end-to-side portacaval anastomosis (PCSA) on systemic and splanchnic circulation has been studied in cirrhotic rats with portal hypertension (CCl4-phenobarbital method) and in control animals. Hemodynamics have been measured using the microsphere technique, with a reference sample for the systemic hemodynamic measurements, and intrasplenic injection for portal systemic shunting rate measurements. Compared with controls, sham-operated (SO) cirrhotic rats showed a hyperdynamic circulation with increased cardiac output (CO) and decreased mean arterial pressure and peripheral resistances. PCSA in control rats induced only a small change in systemic hemodynamics, with parallel decreases in arterial pressure and peripheral resistances, and a small, nonsignificant increase in CO. In cirrhotic rats, PCSA induced a decrease of CO to values similar to those of control rats, with an increase in total peripheral resistances. PCSA induced an increase in hepatic arterial blood flow in control and in cirrhotic rats, portal pressure becoming in this latter group not different from that of control rats. Blood flow to splanchnic organs was higher in SO cirrhotic than in SO control animals. Thus portal venous inflow was also increased in SO cirrhotic rats. PCSA induced an increase in portal venous inflow in control rats, which was only significant in cirrhotic rats when expressed as a percentage of CO. In SO control animals, a significant correlation was observed between total peripheral resistances and splanchnic arteriolar resistances and between CO and splanchnic blood flow. These correlations were not observed in cirrhotic rats. These results do not support the hypothesis that hyperdynamic circulation shown by cirrhotic rats is based on increases in splanchnic blood flow and (or) massive portal systemic shunting.  相似文献   

19.
Limited information is available about selection of the threshold for arterial blood pressure in critically ill patients, particularly in sepsis when normal organ blood flow autoregulation may be altered. The present experimental study investigated whether increasing perfusion pressure using norepinephrine in normotensive hyperdynamic porcine bacteremia affects intestinal macro- and microcirculation. Nine pigs received continuous i.v. administration of Pseudomonas aeruginosa (PSAE) to develop hyperdynamic, normotensive (mean arterial pressure [MAP] 65 mm Hg) sepsis. Norepinephrine was used to achieve 10-15 % increase in MAP. Mesenteric arterial blood flow (Q(gut)), ileal mucosal microvascular perfusion (LDF(gut)) and ileal-end-tidal PCO(2) gap (PCO(2) gap) were measured before norepinephrine, after 60 min of norepinephrine infusion and 60 min after norepinephrine infusion had been discontinued. During a 12 h period of PSAE infusion all pigs developed hyperdynamic circulation with significantly decreased MAP. Although the mesenteric blood flow remained unchanged, infusion of PSAE resulted in a gradual fall of ileal microvascular perfusion, which was associated with progressively rising PCO(2) gap. Norepinephrine which induced a 10-15 % increase in perfusion pressure (i.e. titrated to attain near baseline values of MAP) affected neither Q(gut) nor the intestinal blood flow distribution (Q(gut)/CO). Similarly, norepinephrine did not change either LDF(gut) or PCO(2) gap. In this hyperdynamic, normotensive porcine bacteremia, norepinephrine-induced increase in perfusion pressure exhibited neither beneficial nor deleterious effects on intestinal macrocirculatory blood flow and ileal mucosal microcirculation. The lack of changes suggests that the gut perfusion was within its autoregulatory range.  相似文献   

20.
Previous studies on metabolic responses to feeding (i.e. the specific dynamic action, SDA) in Antarctic fishes living at temperatures below zero have reported long-lasting increases and small peak responses. We therefore hypothesized that the postprandial hyperemia also would be limited in the Antarctic fish Pagothenia borchgrevinki. The proportion of cardiac output directed to the splanchnic circulation in unfed fish was 18%, which is similar to temperate fish species. Contrary to our prediction, however, gastrointestinal blood flow had increased by 88% at twenty four hours after feeding due to a significant increase in cardiac output and a significant decrease in gastrointestinal vascular resistance. While gastric evacuation time appeared to be longer than in comparable temperate species, digestion had clearly commenced twenty four hours after feeding as judged by a reduction in mass of the administered feed. Even so, oxygen consumption did not increase suggesting an unusually slowly developing SDA. Adrenaline and angiotensin II was injected into unfed fish to investigate neuro-humoral control mechanisms of gastrointestinal blood flow. Both agonists increased gastrointestinal vascular resistance and arterial blood pressure, while systemic vascular resistance was largely unaffected. The hypertension was mainly due to increased cardiac output revealing that the heart and the gastrointestinal vasculature, but not the somatic vasculature, are important targets for these agonists. It is suggested that the apparently reduced SDA in P. borchgrevinki is due to a depressant effect of the low temperature on protein assimilation processes occurring outside of the gastrointestinal tract, while the gastrointestinal blood flow responses to feeding and vasoactive substances resemble those previously observed in temperate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号