首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gag-specific cytotoxic T lymphocytes (CTLs) exert strong suppressive pressure on human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. However, it has remained unclear whether they can actually contain primary viral replication. Recent trials of prophylactic vaccines inducing virus-specific T-cell responses have indicated their potential to confer resistance against primary SIV replication in rhesus macaques, while the immunological determinant for this vaccine-based viral control has not been elucidated thus far. Here we present evidence implicating Gag-specific CTLs as responsible for the vaccine-based primary SIV control. Prophylactic vaccination using a Gag-expressing Sendai virus vector resulted in containment of SIVmac239 challenge in all rhesus macaques possessing the major histocompatibility complex (MHC) haplotype 90-120-Ia. In contrast, 90-120-Ia-positive vaccinees failed to contain SIVs carrying multiple gag CTL escape mutations that had been selected, at the cost of viral fitness, in SIVmac239-infected 90-120-Ia-positive macaques. These results show that Gag-specific CTL responses do play a crucial role in the control of wild-type SIVmac239 replication in vaccinees. This study implies the possibility of Gag-specific CTL-based primary HIV containment by prophylactic vaccination, although it also suggests that CTL-based AIDS vaccine efficacy may be abrogated in viral transmission between MHC-matched individuals.  相似文献   

2.
Cytotoxic T-lymphocyte (CTL) responses are crucial for the control of immunodeficiency virus replication. Possible involvement of a dominant single epitope-specific CTL in control of viral replication has recently been indicated in preclinical AIDS vaccine trials, but it has remained unclear if multiple epitope-specific CTLs can be involved in the vaccine-based control. Here, by following up five rhesus macaques that showed vaccine-based control of primary replication of a simian immunodeficiency virus, SIVmac239, we present evidence indicating involvement of multiple epitope-specific CTL responses in this control. Three macaques maintained control for more than 2 years without additional mutations in the provirus. However, in the other two that shared a major histocompatibility complex haplotype, viral mutations were accumulated in a similar order, leading to viral evasion from three epitope-specific CTL responses with viral fitness costs. Accumulation of these multiple escape mutations resulted in the reappearance of plasma viremia around week 60 after challenge. Our results implicate multiple epitope-specific CTL responses in control of immunodeficiency virus replication and furthermore suggest that sequential accumulation of multiple CTL escape mutations, if allowed, can result in viral evasion from this control.  相似文献   

3.
Virus-specific cytotoxic T lymphocytes (CTL) are critical for control of human immunodeficiency virus type 1 replication. However, viral escape from CTL recognition can undermine this immune control. Here we demonstrate the high frequency and pattern of viral escape from dominant epitope-specific CTL in SIV gag DNA-vaccinated rhesus monkeys following a heterologous simian immunodeficiency virus (SIV) challenge. DNA-vaccinated monkeys exhibited initial effective control of the SIV challenge, but this early control was lost by serial breakthroughs of viral replication over a 3-year follow-up period. Increases in plasma viral RNA correlated temporally with declines of dominant SIV epitope-specific CD8(+) T-lymphocyte responses and the emergence of viral mutations that escaped recognition by dominant epitope-specific CTL. Viral escape from CTL occurred in a total of seven of nine vaccinated and control monkeys, including three animals that initially controlled viral replication to undetectable levels of plasma viral RNA. These data suggest that CTL exert selective pressure on viral replication and that viral escape from CTL may be a limitation of CTL-based AIDS vaccine strategies.  相似文献   

4.
Reversion of CTL escape-variant immunodeficiency viruses in vivo   总被引:17,自引:0,他引:17  
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.  相似文献   

5.
The evolution of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) as they replicate in infected individuals reflects a balance between the pressure on the virus to mutate away from recognition by dominant epitope-specific cytotoxic T lymphocytes (CTL) and the structural constraints on the virus' ability to mutate. To gain a further understanding of the strategies employed by these viruses to maintain replication competency in the face of the intense selection pressure exerted by CTL, we have examined the replication fitness and morphological ramifications of a dominant epitope mutation and associated flanking amino acid substitutions on the capsid protein (CA) of SIV/simian-human immunodeficiency virus (SHIV). We show that a residue 2 mutation in the immunodominant p11C, C-M epitope (T47I) of SIV/SHIV not only decreased CA protein expression and viral replication, but it also blocked CA assembly in vitro and virion core condensation in vivo. However, these defects were restored by the introduction of upstream I26V and/or downstream I71V substitutions in CA. These findings demonstrate how flanking compensatory amino acid substitutions can facilitate viral escape from a dominant epitope-specific CTL response through the effects of these associated mutations on the structural integrity of SIV/SHIV.  相似文献   

6.
A current promising AIDS vaccine strategy is to elicit CD8(+) cytotoxic T lymphocyte (CTL) responses that broadly recognize highly-diversified HIVs. In our previous vaccine trial eliciting simian immunodeficiency virus (SIV) mac239 Gag-specific CTL responses, a group of Burmese rhesus macaques possessing a major histocompatibility complex haplotype 90-120-Ia have shown vaccine-based viral control against a homologous SIVmac239 challenge. Vaccine-induced Gag(206-216) epitope-specific CTL responses exerted strong selective pressure on the virus in this control. Here, we have evaluated in vivo efficacy of vaccine-induced Gag(206-216)-specific CTL responses in two 90-120-Ia-positive macaques against challenge with a heterologous SIVsmE543-3 that has the same Gag(206-216) epitope sequence with SIVmac239. Despite efficient Gag(206-216)-specific CTL induction by vaccination, both vaccinees failed to control SIVsmE543-3 replication and neither of them showed mutations within the Gag(206-216) epitope. Further analysis indicated that Gag(206-216)-specific CTLs failed to show responses against SIVsmE543-3 infection due to a change from aspartate to glutamate at Gag residue 205 immediately preceding the amino terminus of Gag(206-216) epitope. Our results suggest that even vaccine-induced CTL efficacy can be abrogated by a single amino acid change in viral epitope flanking region, underlining the influence of viral epitope flanking sequences on CTL-based AIDS vaccine efficacy.  相似文献   

7.
Vaccine-based control of the replication of a simian immunodeficiency virus (SIV), SIVmac239, in macaques has recently been shown. In the process of the control, a mutant virus escaping from epitope-specific cytotoxic-T-lymphocyte (CTL) responses was rapidly selected and contained. In this study, we show that the wild-type virus appeared and became predominant in the absence of the epitope-specific CTL after inoculation of naive macaques with a molecular clone DNA of the CTL escape mutant SIV. This is the first report describing reversion in vivo from an inoculated, molecular proviral DNA clone of immunodeficiency virus with a CTL escape mutation.  相似文献   

8.
In response to pressure exerted by major histocompatibility complex (MHC) class I-mediated CD8(+) T cell control, human immunodeficiency virus (HIV) escape mutations often arise in immunodominant epitopes recognized by MHC class I alleles. While the current standard of care for HIV-infected patients is treatment with highly active antiretroviral therapy (HAART), suppression of viral replication in these patients is not absolute and latently infected cells persist as lifelong reservoirs. To determine whether HIV escape from MHC class I-restricted CD8(+) T cell control develops during HAART treatment and then enters latent reservoirs in the periphery and central nervous system (CNS), with the potential to emerge as replication-competent virus, we tracked the longitudinal development of the simian immunodeficiency virus (SIV) Gag escape mutation K165R in HAART-treated SIV-infected pigtailed macaques. Key findings of these studies included: (i) SIV Gag K165R escape mutations emerged in both plasma and cerebrospinal fluid (CSF) during the decaying phase of viremia after HAART initiation before suppression of viral replication, (ii) SIV K165R Gag escape mutations were archived in latent proviral DNA reservoirs, including the brain in animals receiving HAART that suppressed viral replication, and (iii) replication-competent SIV Gag K165R escape mutations were present in the resting CD4(+) T cell reservoir in HAART-treated SIV-infected macaques. Despite early administration of aggressive antiretroviral treatment, HIV immune escape from CD8(+) T cell control can still develop during the decaying phases of viremia and then persist in latent reservoirs, including the brain, with the potential to emerge if HAART therapy is interrupted.  相似文献   

9.
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.  相似文献   

10.
Cytotoxic T lymphocyte (CTL) responses play a central role in viral suppression in human immunodeficiency virus (HIV) infections. Prophylactic vaccination resulting in effective CTL responses after viral exposure would contribute to HIV control. It is important to know how CTL memory induction by vaccination affects postexposure CTL responses. We previously showed vaccine-based control of a simian immunodeficiency virus (SIV) challenge in a group of Burmese rhesus macaques sharing a major histocompatibility complex class I haplotype. Gag(206-216) and Gag(241-249) epitope-specific CTL responses were responsible for this control. In the present study, we show the impact of individual epitope-specific CTL induction by prophylactic vaccination on postexposure CTL responses. In the acute phase after SIV challenge, dominant Gag(206-216)-specific CTL responses with delayed, naive-derived Gag(241-249)-specific CTL induction were observed in Gag(206-216) epitope-vaccinated animals with prophylactic induction of single Gag(206-216) epitope-specific CTL memory, and vice versa in Gag(241-249) epitope-vaccinated animals with single Gag(241-249) epitope-specific CTL induction. Animals with Gag(206-216)-specific CTL induction by vaccination selected for a Gag(206-216)-specific CTL escape mutation by week 5 and showed significantly less decline of plasma viral loads from week 3 to week 5 than in Gag(241-249) epitope-vaccinated animals without escape mutations. Our results present evidence indicating significant influence of prophylactic vaccination on postexposure CTL immunodominance and cooperation of vaccine antigen-specific and non-vaccine antigen-specific CTL responses, which affects virus control. These findings provide great insights into antigen design for CTL-inducing AIDS vaccines.  相似文献   

11.
12.
Virus-specific CD8+ T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206–216 and Gag241–249 epitope-specific CD8+ T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8+ T-cell responses induced in all the 90-120-Ia+ macaques on SIV replication remains unknown. Here, we identified three CD8+ T-cell epitopes, Nef9–19, Nef89–97, and Nef193–203, associated with 90-120-Ia. Nef9–19 and Nef193–203 epitope-specific CD8+ T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8+ T cells, indicating that these CD8+ T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.  相似文献   

13.
The emergence of cytotoxic T-lymphocyte (CTL) escape mutations in human immunodeficiency virus type 1 (HIV-1) proteins has been anecdotally associated with progression to AIDS, but it has been difficult to determine whether viral mutation is the cause or the result of increased viral replication. Here we describe a perinatally HIV-infected child who maintained a plasma viral load of <400 copies/ml for almost a decade until a nonbinding escape mutation emerged within the immunodominant CTL epitope. The child subsequently experienced a reemergence of HIV-1 viremia accompanied by a marked increase in the number of CTL epitopes targeted. This temporal pattern suggests that CD8 escape can play a causal role in the loss of immune control.  相似文献   

14.
CD8+ T cells play a major role in the containment of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. CD8+ T cell-driven variations in conserved regions under functional constraints result in diminished viral replicative capacity. While compensatory mutations outside an epitope can restore replicative capacity, the kinetics with which they arise remains unknown. Additionally, certain patterns of linked mutations associated with CD8+ T cell epitope escape in these highly conserved regions may lead to variable levels of viral fitness. Here, we used pyrosequencing to investigate the kinetics and patterns of mutations surrounding the Mamu-A1*00101-bound Gag(181-189)CM9 CD8+ T cell epitope. We obtained more than 400 reads for each sequencing time point, allowing us to confidently detect the emergence of viral variants bearing escape mutations with frequencies as low as 1% of the circulating virus. With this level of detail, we demonstrate that compensatory mutations generally arise concomitantly with Gag(181-189)CM9 escape mutations. We observed distinct patterns of linked flanking mutations, most of which were found downstream of Gag(181-189)CM9. Our data indicate that, whereas Gag(181-189)CM9 escape is much more complex that previously appreciated, it occurs in a coordinated fashion, with very specific patterns of flanking mutations required for immune evasion. This is the first detailed report of the ontogeny of compensatory mutations that allow CD8+ T cell epitope escape in infected individuals.  相似文献   

15.
Major histocompatibility complex class I (MHC-I)-restricted CD8(+) cytotoxic T lymphocyte (CTL) responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. In particular, Gag-specific CTL responses have been shown to exert strong suppressive pressure on HIV/SIV replication. Additionally, association of Vif-specific CTL frequencies with in vitro anti-SIV efficacy has been suggested recently. Host MHC-I genotypes could affect the immunodominance patterns of these potent CTL responses. Here, Gag- and Vif-specific CTL responses during primary SIVmac239 infection were examined in three groups of Burmese rhesus macaques, each group having a different MHC-I haplotype. The first group of four macaques, which possessed the MHC-I haplotype 90-010-Ie, did not show Gag- or Vif-specific CTL responses. However, Nef-specific CTL responses were elicited, suggesting that primary SIV infection does not induce predominant CTL responses specific for Gag/Vif epitopes restricted by 90-010-Ie-derived MHC-I molecules. In contrast, Gag- and Vif-specific CTL responses were induced in the second group of two 89-075-Iw-positive animals and the third group of two 91-010-Is-positive animals. Considering the potential of prophylactic vaccination to affect CTL immunodominance post-viral exposure, these groups of macaques would be useful for evaluation of vaccine antigen-specific CTL efficacy against SIV infection.  相似文献   

16.
Because cytotoxic T-lymphocytes (CTLs) have been shown to play a role in controlling human immunodeficiency virus (HIV) infection and because CTL-based simian immunodeficiency virus (SIV) vaccines have proved effective in non-human primates, one goal of HIV vaccine design is to elicit effective CTL responses in humans. Such a vaccine could improve viral control in patients who later become infected, thereby reducing onwards transmission and enhancing life expectancy in the absence of treatment. The ability of HIV to evolve mutations that evade CTLs and the ability of these 'escape mutants' to spread amongst the population poses a challenge to the development of an effective and robust vaccine. We present a mathematical model of within-host evolution and between-host transmission of CTL escape mutants amongst a population receiving a vaccine that elicits CTL responses to multiple epitopes. Within-host evolution at each epitope is represented by the outgrowth of escape mutants in hosts who restrict the epitope and their reversion in hosts who do not restrict the epitope. We use this model to investigate how the evolution and spread of escape mutants could affect the impact of a vaccine. We show that in the absence of escape, such a vaccine could markedly reduce the prevalence of both infection and disease in the population. However the impact of such a vaccine could be significantly abated by CTL escape mutants, especially if their selection in hosts who restrict the epitope is rapid and their reversion in hosts who do not restrict the epitope is slow. We also use the model to address whether a vaccine should span a broad or narrow range of CTL epitopes and target epitopes restricted by rare or common HLA types. We discuss the implications and limitations of our findings.  相似文献   

17.
It is now accepted that an effective vaccine against AIDS must include effective cytotoxic-T-lymphocyte (CTL) responses. The simian immunodeficiency virus (SIV)-infected rhesus macaque is the best available animal model for AIDS, but analysis of macaque CTL responses has hitherto focused mainly on epitopes bound by a single major histocompatibility complex (MHC) class I molecule, Mamu-A*01. The availability of Mamu-A*01-positive macaques for vaccine studies is therefore severely limited. Furthermore, it is becoming clear that different CTL responses are able to control immunodeficiency virus replication with varying success, making it a priority to identify and analyze CTL responses restricted by common MHC class I molecules other than Mamu-A*01. Here we describe two novel epitopes derived from SIV, one from Gag (Gag(71-79) GY9), and one from the Nef protein (Nef(159-167) YY9). Both epitopes are bound by the common macaque MHC class I molecule, Mamu-A*02. The sequences of these two eptiopes are consistent with the molecule's peptide-binding motif, which we have defined by elution of natural ligands from Mamu-A*02. Strikingly, we found evidence for the selection of escape variant viruses by CTL specific for Nef(159-167) YY9 in 6 of 6 Mamu-A*02-positive animals. In contrast, viral sequences encoding the Gag(71-79) GY9 epitope remained intact in each animal. This situation is reminiscent of Mamu-A*01-restricted CTL that recognize Tat(28-35) SL8, which reproducibly selects for escape variants during acute infection, and Gag(181-189) CM9, which does not. Differential selection by CTL may therefore be a paradigm of immunodeficiency virus infection.  相似文献   

18.
The potential contribution of a plasmid DNA construct to vaccine-elicited protective immunity was explored in the simian immunodeficiency virus (SIV)/macaque model of AIDS. Making use of soluble major histocompatibility class I/peptide tetramers and peptide-specific killing assays to monitor CD8(+) T-lymphocyte responses to a dominant SIV Gag epitope in genetically selected rhesus monkeys, a codon-optimized SIV gag DNA vaccine construct was shown to elicit a high-frequency SIV-specific cytotoxic T-lymphocyte (CTL) response. This CTL response was demonstrable in both peripheral blood and lymph node lymphocytes. Following an intravenous challenge with the highly pathogenic viral isolate SIVsm E660, these vaccinated monkeys developed a secondary CTL response that arose with more rapid kinetics and reached a higher frequency than did the postchallenge CTL response in control plasmid-vaccinated monkeys. While peak plasma SIV RNA levels were comparable in the experimentally and control-vaccinated monkeys during the period of primary infection, the gag plasmid DNA-vaccinated monkeys demonstrated better containment of viral replication by 50 days following SIV challenge. These findings indicate that a plasmid DNA vaccine can elicit SIV-specific CTL responses in rhesus monkeys, and this vaccine-elicited immunity can facilitate the generation of secondary CTL responses and control of viral replication following a pathogenic SIV challenge. These observations suggest that plasmid DNA may prove a useful component of a human immunodeficiency virus type 1 vaccine.  相似文献   

19.
HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection.  相似文献   

20.
Virus-specific cytotoxic T lymphocytes (CTL) exert intense selection pressure on replicating simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) in infected individuals. The immunodominant Mamu-A(*)01-restricted Gag p11C, C-M epitope is highly conserved among all sequenced isolates of SIV and therefore likely is structurally constrained. The strategies used by virus isolates to mutate away from an immunodominant epitope-specific CTL response are not well defined. Here we demonstrate that the emergence of a position 2 p11C, C-M epitope substitution (T47I) in a simian-human immunodeficiency virus (SHIV) strain 89.6P-infected Mamu-A(*)01(+) monkey is temporally correlated with the emergence of a flanking isoleucine-to-valine substitution at position 71 (I71V) of the capsid protein. An analysis of the SIV and HIV-2 sequences from the Los Alamos HIV Sequence Database revealed a significant association between any position 2 p11C, C-M epitope mutation and the I71V mutation. The T47I mutation alone is associated with significant decreases in viral protein expression, infectivity, and replication, and these deficiencies are restored to wild-type levels with the introduction of the flanking I71V mutation. Together, these data suggest that a compensatory mutation is selected for in SHIV strain 89.6P to facilitate the escape of that virus from CTL recognition of the dominant p11C, C-M epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号