首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(6):816-818
Autophagy, a specialized lysosomal degradation pathway, has proven to be a potent cell-autonomous defense mechanism against a range of intracellular microbes. In addition, autophagy emerged recently as a critical regulator of innate and adaptive immune responses. Links between autophagy and innate immunity are being progressively unveiled. For instance, several TLR (Toll-Like Receptor) agonists upregulate autophagy flux in immune cell types such as DC (dendritic cells) or macrophages. Conversely, and perhaps surprisingly, is the observation that TLR7-mediated responses might depend on autophagy in plasmacytoid DC, thus suggesting a more complex link between TLR-dependent responses and autophagy. Recently, the demonstration that NOD2 increases autophagy suggests that innate immune responses initiated via a broad range of pathogen recognition receptors can regulate autophagy. In addition to its involvement in innate immune responses, autophagy regulates adaptive immune responses via both MHC class I and class II molecules depending on the cellular context and the nature of the antigen.  相似文献   

2.
《Autophagy》2013,9(3):280-285
Autophagy is an evolutionarily ancient pathway for survival during different forms of cellular stress, including infection with viruses and other intracellular pathogens. Autophagy may protect against viral infection through degradation of viral components (xenophagy), by promoting the survival or death of infected cells, through delivery of Toll-like receptor (TLR) ligands to endosomes to activate innate immunity, or by feeding antigens to MHC class II compartments to activate adaptive immunity. Given this integral role of autophagy in innate and adaptive antiviral immunity, selective pressure likely promoted the emergence of escape mechanisms by pathogenic viruses. This review will briefly summarize the current understanding of autophagy as an antiviral pathway, and then discuss strategies that viruses may utilize to evade this host defense mechanism.  相似文献   

3.
Orvedahl A  Levine B 《Autophagy》2008,4(3):280-285
Autophagy is an evolutionarily ancient pathway for survival during different forms of cellular stress, including infection with viruses and other intracellular pathogens. Autophagy may protect against viral infection through degradation of viral components (xenophagy), by promoting the survival or death of infected cells, through delivery of Toll-like receptor (TLR) ligands to endosomes to activate innate immunity, or by feeding antigens to MHC class II compartments to activate adaptive immunity. Given this integral role of autophagy in innate and adaptive antiviral immunity, selective pressure likely promoted the emergence of escape mechanisms by pathogenic viruses. This review will briefly summarize the current understanding of autophagy as an antiviral pathway, and then discuss strategies that viruses may utilize to evade this host defense mechanism.  相似文献   

4.
Toll-like receptors (TLRs) serve as the major innate immune sensors for detection of specific molecular patterns on various pathogens. TLRs activate signaling events mainly by utilizing ubiquitin-dependent mechanisms. Recent research advances have provided evidence that TLR signaling is linked to induction of autophagy. Autophagy is currently known to affect both of the immune defense and suppression of inflammatory responses. In TLR-associated immune responses, autophagic lysis of intracellular microbes (called xenophagy) contributes to the former mechanism, while the latter seems to be mediated by the control of the mitochondrial integrity or selective autophagic clearance of aggregated signaling proteins (called aggrephagy). Several autophagy-related ubiquitin-binding proteins, such as SQSTM1/p62 and NDP52, mediate xenophagy and aggrephagy. In this review, we summarize the expanded knowledge regarding TLR signaling and autophagy signaling. After that, we will focus on autophagy-associated signaling downstream of TLRs and the effect of autophagy on TLR signaling, thus highlighting the signaling crosstalk between the TLR-associated innate immune responses and the regulation of innate immunity by xenophagy and aggrephagy.  相似文献   

5.
《Autophagy》2013,9(3):175-178
Autophagy is a newly recognized innate and adaptive immunity defense against intracellular pathogens, in keeping with its role as a cytoplasmic maintenance pathway. Induction of autophagy by physiological, pharmacological or immunological means can eliminate intracellular Mycobacterium tuberculosis, providing one of the first examples of the immunological role of autophagy. Under normal circumstances, M. tuberculosis survives in macrophages by inhibiting phagolysosome biogenesis. Induction of autophagy overcomes the mycobacterial phagosome maturation block, and delivers the tubercle bacilli to degradative, compartments, where they are eliminated.  相似文献   

6.
Autophagy is a newly recognized innate and adaptive immunity defense against intracellular pathogens, in keeping with its role as a cytoplasmic maintenance pathway. Induction of autophagy by physiological, pharmacological or immunological means can eliminate intracellular Mycobacterium tuberculosis, providing one of the first examples of the immunological role of autophagy. Under normal circumstances, M. Tuberculosis survives in macrophages by inhibiting phagolysosome biogenesis. Induction of autophagy overcomes the mycobacterial phagosome maturation block, and delivers the tubercle bacilli to degradative compartments where they are eliminated.  相似文献   

7.
Autophagy is a major intracellular pathway for degradation and recycling of long-lived proteins and cytoplasmic organelles that plays an essential role in maintenance of homeostasis in response to starvation and other cellular stresses. Autophagy is also important for a variety of other processes including restriction of intracellular pathogen replication. Our understanding of the fascinating relationship between viruses and the autophagy machinery is still in its infancy but it is clear that autophagy is a newly recognized facet of innate and adaptive immunity against viral infection. Although the autophagy pathway is emerging as a component of host defense, certain viruses have developed strategies to counteract these antiviral mechanisms, and others appear to have co-opted the autophagy machinery as proviral host factors favoring viral replication. The complex interplay between autophagy and viral infection will be discussed in this review.  相似文献   

8.
Macroautophagy, a homeostatic process that shuttles cytoplasmic constituents into endosomal and lysosomal compartments, has recently been shown to deliver antigens for presentation on major histocompatibility complex (MHC) class II. Autophagy-mediated antigen processing in thymic epithelial cells has been suggested to be involved in the generation of a self-MHC restricted and self-tolerant CD4+ T cell repertoire. Furthermore, there is accumulating evidence that the up-regulation of autophagy by pattern-recognition receptor signaling represents an innate defense mechanism against intracellular pathogens. Thus, through linking pathogen breakdown with the presentation of pathogen-derived autophagy substrates on MHC class II, autophagy serves a dual function at the interface of the innate and the adaptive immune response.  相似文献   

9.
Type I IFNs represent a major antimicrobial defense mechanism due to their property of enhancing immune responses by priming both innate and adaptive immune cells. Plasmacytoid dendritic cells (pDC) are the major source of type I IFN in the human body and represent innate immune cells involved in first-line defense against invading pathogens. Although pDC activation has been extensively studied upon stimulation with synthetic TLR ligands, viruses, and intracellular bacteria, there is only scarce information on extracellular bacteria. In this study we show that the triggering of human pDC-derived IFN-alpha secretion by Staphylococcus aureus is independent of TLR2 and specific for coagulase-positive staphylococci. Specificity of the pDC response to S. aureus is independent of the bacterial virulence factors protein A and alpha-toxin but is mediated by Ag-specific IgG and CD32. S. aureus-induced pDC activation can be blocked by inhibitory DNA oligonucleotides and chloroquine, suggesting that engagement of TLR7/9 by bacterial nucleic acids after CD32-mediated uptake of these compounds may play a central role in this process. Altogether, we propose that in marked contrast to nonselective TLR2-dependent activation of most innate immune cells, pDC activation by S. aureus represents an Ag-specific memory response since it requires the presence of class-switched immunoglobulins.  相似文献   

10.
11.
Sanjuan MA  Green DR 《Autophagy》2008,4(5):607-611
Autophagy is a conserved pathway that sequesters cytoplasmic material and delivers it to lysosomes for degradation. Digestion of portions of the cell interior plays a key role in the recycling of nutrients, remodeling, and disposal of superfluous organelles. Along with its metabolic function, autophagy is an important mechanism for innate immunity against invading bacteria and other pathogens. Multicellular organisms seem to have exploited autophagy to eliminate intracellular pathogens that would otherwise grow in the cytoplasm. Surprisingly, autophagy is involved in the response to extracellular pathogens as well, following their engulfment by conventional phagocytosis. Possible links between these two forms of cellular "eating" represent a new dimension in host defense.  相似文献   

12.
Autophagy is a homeostatic process that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses to intracellular pathogens. Autophagy restricts viral infections as well as replication of intracellular bacteria and parasites and delivers pathogenic determinants for TLR stimulation and for MHC class II presentation to the adaptive immune system. Apart from its role in defense against pathogens, autophagy-mediated presentation of self-antigens in the steady state could have a crucial role in the induction and maintenance of CD4(+) T-cell tolerance. This review describes the mechanisms by which the immune system utilizes autophagic degradation of cytoplasmic material to regulate adaptive immune responses.  相似文献   

13.
Autophagy is an important innate safeguard mechanism for protecting an organism against invasion by pathogens. We have previously discovered that Kaposi''s sarcoma-associated herpesvirus (KSHV) evades this host defense through tight suppression of autophagy by targeting multiple steps of autophagy signal transduction. Here, we report that KSHV K7 protein interacts with Rubicon autophagy protein and inhibits the autophagosome maturation step by blocking Vps34 enzymatic activity, further highlighting how KSHV deregulates autophagy-mediated host immunity for its life cycle.  相似文献   

14.
In addition to its clean-up function, autophagy is considered as an innate immunity mechanism due to its role in the removal of intracellular pathogens. Toll-like receptors (TLRs) are crucial components of innate immunity involved in the recognition of a diverse array of microbial products. Recent works demonstrated that different pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) and single-strand RNA are able to induce autophagy via different TLRs in immune cells. In a recent report, we showed that bacterial CpG motifs, another PAMP, can induce autophagy in rodent and human tumor cell lines and that this process is TLR9-dependent. In addition, an increase in the number of autophagosomes can also be observed in vivo after the intratumoral injection of CpG motifs. These results extend the link between TLRs and autophagy to non-immune tumor cells and may be relevant for cancer treatment and more generally for gene therapy approaches in TLR9-positive tissues. In this addendum, we discuss the potential mechanisms and the consequences of the CpG-induced autophagy in tumor cells.  相似文献   

15.
Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of the plant to recognize pathogen invasion and to efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae is mediated by the specific interaction between the plant serine/threonine kinase Pto and the bacterial protein AvrPto. This article reviews molecular and biochemical properties that confer to Pto the capability to function as an intracellular receptor and to activate a signaling cascade leading to the induction of defense responses.  相似文献   

16.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Nod1 and Nod2 are members of the rapidly expanding family of NACHT domain-containing proteins involved in intracellular recognition of bacterial products. Nods proteins are involved in the cytosolic detection of peptidoglycan motifs of bacteria, recognized through the LRR domain. The role of the NACHT-LRR system of detection in innate immune responses is highlighted at the mucosal barrier, where most of the membranous Toll like receptors (TLRs) are not expressed, or with pathogens that have devised ways to escape TLR sensing. For a given pathogen, the sum of the pathways induced by the recognition of the different "pathogen associated molecular patterns" (PAMPs) by the different pattern recognition receptors (PRRs) trigger and shape the subsequent innate and adaptive immune responses. Knowledge gathered during the last decade on PRR and their agonists, and recent studies on bacterial infections provide new insights into the immune response and the pathogenesis of human infectious diseases.  相似文献   

17.
Mycobacterium tuberculosis is an intracellular pathogen persisting within phagosomes through interference with phagolysosome biogenesis. Here we show that stimulation of autophagic pathways in macrophages causes mycobacterial phagosomes to mature into phagolysosomes. Physiological induction of autophagy or its pharmacological stimulation by rapamycin resulted in mycobacterial phagosome colocalization with the autophagy effector LC3, an elongation factor in autophagosome formation. Autophagy stimulation increased phagosomal colocalization with Beclin-1, a subunit of the phosphatidylinositol 3-kinase hVPS34, necessary for autophagy and a target for mycobacterial phagosome maturation arrest. Induction of autophagy suppressed intracellular survival of mycobacteria. IFN-gamma induced autophagy in macrophages, and so did transfection with LRG-47, an effector of IFN-gamma required for antimycobacterial action. These findings demonstrate that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis. Autophagy, which is a hormonally, developmentally, and, as shown here, immunologically regulated process, represents an underappreciated innate defense mechanism for control of intracellular pathogens.  相似文献   

18.
The biology of Toll-like receptors   总被引:24,自引:0,他引:24  
In 1997, a human homologue of the Drosophila Toll protein was described, a protein later to be designated Toll-like receptor 4 (TLR4). Since that time, additional human and murine TLR proteins have been identified. Mammalian TLR proteins appear to represent a conserved family of innate immune recognition receptors. These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in the activation of genes that mediate innate immune defenses. Numerous studies have now identified a wide variety of chemically-diverse bacterial products that serve as putative ligands for TLR proteins. More recent studies have identified the first endogenous protein ligands for TLR proteins. TLR signaling represents a key feature of innate immune response to pathogen invasion.  相似文献   

19.
MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages   总被引:1,自引:0,他引:1  
The Toll-like receptors (TLR) play an instructive role in innate and adaptive immunity by recognizing specific molecular patterns from pathogens. Autophagy removes intracellular pathogens and participates in antigen presentation. Here, we demonstrate that not only TLR4, but also other TLR family members induce autophagy in macrophages, which is inhibited by MyD88, Trif, or Beclin 1 shRNA expression. MyD88 and Trif co-immunoprecipitate with Beclin 1, a key factor in autophagosome formation. TLR signaling enhances the interaction of MyD88 and Trif with Beclin 1, and reduces the binding of Beclin 1 to Bcl-2. These findings indicate TLR signaling via its adaptor proteins reduces the binding of Beclin 1 to Bcl-2 by recruiting Beclin 1 into the TLR-signaling complex leading to autophagy.  相似文献   

20.
The remarkable resistance of the urinary tract to infection has been attributed to its physical properties and the innate immune responses triggered by pattern recognition receptors lining the tract. We report a distinct TLR4 mediated mechanism in bladder epithelial cells (BECs) that abrogates bacterial invasion, a necessary step for successful infection. Compared to controls, uropathogenic type 1 fimbriated Escherichia coli and Klebsiella pneumoniae invaded BECs of TLR4 mutant mice in 10-fold or greater numbers. TLR4 mediated suppression of bacterial invasion was linked to increased intracellular cAMP levels which negatively impacted Rac-1 mediated mobilization of the cytoskeleton. Artificially increasing intracellular cAMP levels in BECs of TLR4 mutant mice restored resistance to type 1 fimbriated bacterial invasion. This finding reveals a novel function for TLR4 and another facet of bladder innate defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号