首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin II plays critical roles in events such as cytokinesis, chemotactic migration, and morphological changes during multicellular development. The amoeba Dictyostelium discoideum provides a simple system for the study of this contractile protein. In this system, myosin II filament assembly is regulated by myosin heavy chain (MHC) phosphorylation in the tail region of the molecule. Earlier studies identified an alpha-kinase, MHC kinase A (MHCK A), which phosphorylates three mapped threonine residues in the myosin tail, driving myosin disassembly. Using molecular and genomic approaches, we have identified a series of related kinases in Dictyostelium. The enzyme MHCK B shares with MHCK A a domain organization that includes a highly novel catalytic domain coupled to a carboxyl-terminal WD repeat domain. We have engineered, expressed, and purified a FLAG-tagged version of the novel kinase. In the present study, we report detailed biochemical and cellular studies documenting that MHCK B plays a physiological role in the control of Dictyostelium myosin II assembly and disassembly during the vegetative life of Dictyostelium amoebae. The presented data supports a model of multiple related MHCKs in this system, with different regulatory mechanisms and pathways controlling each enzyme.  相似文献   

2.
Phosphorylation of the Dictyostelium myosin II heavy chain (MHC) has a key role in regulating myosin localization in vivo and drives filament disassembly in vitro. Previous molecular analysis of the Dictyostelium myosin II heavy chain kinase (MHCK A) gene has demonstrated that the catalytic domain of this enzyme is extremely novel, showing no significant similarity to the known classes of protein kinases (Futey, L. M., Q. G. Medley, G. P. Cote, and T. T. Egelhoff. 1995. J. Biol. Chem. 270:523-529). To address the physiological roles of this enzyme, we have analyzed the cellular consequences of MHCK A gene disruption (mhck A- cells) and MHCK A overexpression (MHCK A++ cells). The mhck A- cells are viable and competent for tested myosin-based contractile events, but display partial defects in myosin localization. Both growth phase and developed mhck A- cells show substantially reduced MHC kinase activity in crude lysates, as well as significant overassembly of myosin into the Triton-resistant cytoskeletal fractions. MHCK A++ cells display elevated levels of MHC kinase activity in crude extracts, and show reduced assembly of myosin into Triton-resistant cytoskeletal fractions. MHCK A++ cells show reduced growth rates in suspension, becoming large and multinucleated, and arrest at the mound stage during development. These results demonstrate that MHCK A functions in vivo as a protein kinase with physiological roles in regulating myosin II localization and assembly in Dictyostelium cells during both growth and developmental stages.  相似文献   

3.
Studies in Dictyostelium discoideum have established that the cycle of myosin II bipolar filament assembly and disassembly controls the temporal and spatial localization of myosin II during critical cellular processes, such as cytokinesis and cell locomotion. Myosin heavy chain kinase A (MHCK A) is a key enzyme regulating myosin II filament disassembly through myosin heavy chain phosphorylation in Dictyostelium. Under various cellular conditions, MHCK A is recruited to actin-rich cortical sites and is preferentially enriched at sites of pseudopod formation, and thus MHCK A is proposed to play a role in regulating localized disassembly of myosin II filaments in the cell. MHCK A possesses an aminoterminal coiled-coil domain that participates in the oligomerization, cellular localization, and actin binding activities of the kinase. In the current study, we show that the interaction between the coiled-coil domain of MHCK A and filamentous actin leads to an approximately 40-fold increase in the initial rate of kinase catalytic activity. Actin-mediated activation of MHCK A involves increased rates of kinase autophosphorylation and requires the presence of the coiled-coil domain. Structure-function analyses revealed that the coiled-coil domain alone binds to actin filaments (apparent K(D) = 0.9 microm) and thus mediates the direct interaction with F-actin required for MHCK A activation. Collectively, these results indicate that MHCK A recruitment to actin-rich sites could lead to localized activation of the kinase via direct interaction with actin filaments, and thus this mode of kinase regulation may represent an important mechanism by which the cell achieves localized disassembly of myosin II filaments required for specific changes in cell shape.  相似文献   

4.
Myosin heavy-chain kinase A (MHCK A) catalyses the disassembly of myosin II filaments in Dictyostelium cells via myosin II heavy-chain phosphorylation. MHCK A possesses a 'coiled-coil'-enriched domain that mediates the oligomerization, cellular localization and actin-binding activities of the kinase. F-actin (filamentous actin) binding by the coiled-coil domain leads to a 40-fold increase in MHCK A activity. In the present study we examined the actin-binding characteristics of the coiled-coil domain as a means of identifying mechanisms by which MHCK A-mediated disassembly of myosin II filaments can be regulated in the cell. Co-sedimentation assays revealed that the coiled-coil domain of MHCK A binds co-operatively to F-actin with an apparent K(D) of approx. 0.5 muM and a stoichiometry of approx. 5:1 [actin/C(1-498)]. Further analyses indicate that the coiled-coil domain binds along the length of the actin filament and possesses at least two actin-binding regions. Quite surprisingly, we found that the coiled-coil domain cross-links actin filaments into bundles, indicating that MHCK A can affect the cytoskeleton in two important ways: (1) by driving myosin II-filament disassembly via myosin II heavy-chain phosphorylation, and (2) by cross-linking/bundling actin filaments. This discovery, along with other supporting data, suggests a model in which MHCK A-mediated bundling of actin filaments plays a central role in the recruitment and activation of the kinase at specific sites in the cell. Ultimately this provides a means for achieving the robust and highly localized disruption of myosin II filaments that facilitates polarized changes in cell shape during processes such as chemotaxis, cytokinesis and multicellular development.  相似文献   

5.
Nonmuscle myosin II plays fundamental roles in cell body translocation during migration and is typically depleted or absent from actin-based cell protrusions such as lamellipodia, but the mechanisms preventing myosin II assembly in such structures have not been identified [1-3]. In Dictyostelium discoideum, myosin II filament assembly is controlled primarily through myosin heavy chain (MHC) phosphorylation. The phosphorylation of sites in the myosin tail domain by myosin heavy chain kinase A (MHCK A) drives the disassembly of myosin II filaments in vitro and in vivo [4]. To better understand the cellular regulation of MHCK A activity, and thus the regulation of myosin II filament assembly, we studied the in vivo localization of native and green fluorescent protein (GFP)-tagged MHCK A. MHCK A redistributes from the cytosol to the cell cortex in response to stimulation of Dictyostelium cells with chemoattractant in an F-actin-dependent manner. During chemotaxis, random migration, and phagocytic/endocytic events, MHCK A is recruited preferentially to actin-rich leading-edge extensions. Given the ability of MHCK A to disassemble myosin II filaments, this localization may represent a fundamental mechanism for disassembling myosin II filaments and preventing localized filament assembly at sites of actin-based protrusion.  相似文献   

6.
Myosin heavy chain kinase (MHCK) A phosphorylates mapped sites at the C-terminal tail of Dictyostelium myosin II heavy chain, driving disassembly of myosin filaments both in vitro and in vivo. MHCK A is organized into three functional domains that include an N-terminal coiled-coil region, a central kinase catalytic domain unrelated to conventional protein kinases, and a WD repeat domain at the C terminus. MHCK B is a homologue of MHCK A that possesses structurally related catalytic and WD repeat domains. In the current study, we explored the role of the WD repeat domains in defining the activities of both MHCK A and MHCK B using recombinant bacterially expressed truncations of these kinases either with or without their WD repeat domains. We demonstrate that substrate targeting is a conserved function of the WD repeat domains of both MHCK A and MHCK B and that this targeting is specific for Dictyostelium myosin II filaments. We also show that the mechanism of targeting involves direct binding of the WD repeat domains to the myosin substrate. To our knowledge, this is the first report of WD repeat domains physically targeting attached kinase domains to their substrates. The examples presented here may serve as a paradigm for enzyme targeting in other systems.  相似文献   

7.
Ras guanine nucleotide exchange factor (GEF) Q, a nucleotide exchange factor from Dictyostelium discoideum, is a 143-kD protein containing RasGEF domains and a DEP domain. We show that RasGEF Q can bind to F-actin, has the potential to form complexes with myosin heavy chain kinase (MHCK) A that contain active RasB, and is the predominant exchange factor for RasB. Overexpression of the RasGEF Q GEF domain activates RasB, causes enhanced recruitment of MHCK A to the cortex, and leads to cytokinesis defects in suspension, phenocopying cells expressing constitutively active RasB, and myosin-null mutants. RasGEF Q(-) mutants have defects in cell sorting and slug migration during later stages of development, in addition to cell polarity defects. Furthermore, RasGEF Q(-) mutants have increased levels of unphosphorylated myosin II, resulting in myosin II overassembly. Collectively, our results suggest that starvation signals through RasGEF Q to activate RasB, which then regulates processes requiring myosin II.  相似文献   

8.
We have cloned a full-length cDNA encoding a novel myosin II heavy chain kinase (mhckC) from Dictyostelium. Like other members of the myosin heavy chain kinase family, the mhckC gene product, MHCK C, has a kinase domain in its N-terminal half and six WD repeats in the C-terminal half. GFP-MHCK C fusion protein localized to the cortex of interphase cells, to the cleavage furrow of mitotic cells, and to the posterior of migrating cells. These distributions of GFP-MHCK C always corresponded with that of myosin II filaments and were not observed in myosin II-null cells, where GFP-MHCK C was diffusely distributed in the cytoplasm. Thus, localization of MHCK C seems to be myosin II-dependent. Cells lacking the mhckC gene exhibited excessive aggregation of myosin II filaments in the cleavage furrows and in the posteriors of the daughter cells once cleavage was complete. The cleavage process of these cells took longer than that of wild-type cells. Taken together, these findings suggest MHCK C drives the disassembly of myosin II filaments for efficient cytokinesis and recycling of myosin II that occurs during cytokinesis.  相似文献   

9.
The ability of Dictyostelium cells to divide without myosin II in a cell cycle-coupled manner has opened two questions about the mechanism of cleavage furrow ingression. First, are there other possible functions for myosin II in this process except for generating contraction of the furrow by a sliding filament mechanism? Second, what could be an alternative mechanical basis for the furrowing? Using aberrant changes of the cell shape and anomalous localization of the actin-binding protein cortexillin I during asymmetric cytokinesis in myosin II-deficient cells as clues, it is proposed that myosin II filaments act as a mechanical lens in cytokinesis. The mechanical lens serves to focus the forces that induce the furrowing to the center of the midzone, a cortical region where cortexillins are enriched in dividing cells. Additionally, continual disassembly of a filamentous actin meshwork at the midzone is a prerequisite for normal ingression of the cleavage furrow and a successful cytokinesis. If this process is interrupted, as it occurs in cells that lack cortexillins, an overassembly of filamentous actin at the midzone obstructs the normal cleavage. Disassembly of the crosslinked actin network can generate entropic contractile forces in the cortex, and may be considered as an alternative mechanism for driving ingression of the cleavage furrow. Instead of invoking different types of cytokinesis that operate under attached and unattached conditions in Dictyostelium, it is anticipated that these cells use a universal multifaceted mechanism to divide, which is only moderately sensitive to elimination of its constituent mechanical processes.  相似文献   

10.
In the simple amoeba Dictyostelium discoideum, myosin II filament assembly is regulated primarily by the action of a set of myosin heavy chain (MHC) kinases and by MHC phosphatase activity. Chemoattractant signals acting via G-protein coupled receptors lead to rapid recruitment of myosin II to the cell cortex, but the structural determinants on myosin necessary for translocation and the second messengers upstream of MHC kinases and phosphatases are not well understood. We report here the use of GFP-myosin II fusions to characterize the domains necessary for myosin II filament assembly and cytoskeletal recruitment during responses to global stimulation with the developmental chemoattractant cAMP. Analysis performed with GFP-myosin fusions, and with latrunculin A-treated cells, demonstrated that F-actin binding via the myosin motor domain together with concomitant filament assembly mediates the rapid cortical translocation observed in response to chemoattractant stimulation. A "headless" GFP-myosin construct lacking the motor domain was unable to translocate to the cell cortex in response to chemoattractant stimulation, suggesting that myosin motor-based motility may drive translocation. This lack of localization contrasts with previous work demonstrating accumulation of the same construct in the cleavage furrow of dividing cells, suggesting that recruitment signals and interactions during cytokinesis differ from those during chemoattractant responses. Evaluating upstream signaling, we find that iplA null mutants, devoid of regulated calcium fluxes during chemoattractant stimulation, display full normal chemoattractant-stimulated myosin assembly and translocation. These results indicate that calcium transients are not necessary for chemoattractant-regulated myosin II filament assembly and translocation.  相似文献   

11.
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.  相似文献   

12.
Rai V  Egelhoff TT 《Eukaryotic cell》2011,10(4):604-610
In Dictyostelium discoideum, myosin II resides predominantly in a soluble pool as the result of phosphorylation of the myosin heavy chain (MHC), and dephosphorylation of the MHC is required for myosin II filament assembly, recruitment to the cytoskeleton, and force production. Protein phosphatase type 2A (PP2A) was identified in earlier studies in Dictyostelium as a key biochemical activity that can drive MHC dephosphorylation. We report here gene targeting and cell biological studies addressing the roles of candidate PP2A B regulatory subunits (phr2aBα and phr2aBβ) in myosin II assembly control in vivo. Dictyostelium phr2aBα- and phr2aBβ-null cells show delayed development, reduction in the assembly of myosin II in cytoskeletal ghost assays, and defects in cytokinesis when grown in suspension compared to parental cell lines. These results demonstrate that the PP2A B subunits phr2aBα and phr2aBβ contribute to myosin II assembly control in vivo, with phr2aBα having the predominant role facilitating MHC dephosphorylation to facilitate filament assembly.  相似文献   

13.
Zhang F  Mönkkönen M  Roth S  Laiho M 《FEBS letters》2002,516(1-3):58-62
Myosin heavy chain kinase A (MHCK A) modulates myosin II filament assembly in the amoeba Dictyostelium discoideum. MHCK A localization in vivo is dynamically regulated during chemotaxis, phagocytosis, and other polarized cell motility events, with preferential recruitment into anterior filamentous actin (F-actin)-rich structures. The current work reveals that an amino-terminal segment of MHCK A, previously identified as forming a coiled-coil, mediates anterior localization. MHCK A co-sediments with F-actin, and deletion of the amino-terminal domain eliminated actin binding. These results indicate that the anterior localization of MHCK A is mediated via direct binding to F-actin, and reveal the presence of an actin-binding function not previously detected by primary sequence evaluation of the coiled-coil domain.  相似文献   

14.
Dictyostelium discoideum myosin II heavy chain kinase A (MHCK A), a member of the atypical α-kinase family, phosphorylates sites in the myosin II tail that block filament assembly. Here we show that the catalytic activity of A-CAT, the α-kinase domain of MHCK A (residues 552-841), is severely inhibited by the removal of a disordered C-terminal tail sequence (C-tail; residues 806-841). The key residue in the C-tail was identified as Thr(825), which was found to be constitutively autophosphorylated. Dephosphorylation of Thr(825) using shrimp alkaline phosphatase decreased A-CAT activity. The activity of a truncated A-CAT lacking Thr(825) could be rescued by P(i), phosphothreonine, and a phosphorylated peptide, but not by threonine, glutamic acid, aspartic acid, or an unphosphorylated peptide. These results focused attention on a P(i)-binding pocket located in the C-terminal lobe of A-CAT. Mutational analysis demonstrated that the P(i)-pocket was essential for A-CAT activity. Based on these results, it is proposed that autophosphorylation of Thr(825) activates ACAT by providing a covalently tethered ligand for the P(i)-pocket. Ab initio modeling studies using the Rosetta FloppyTail and FlexPepDock protocols showed that it is feasible for the phosphorylated Thr(825) to dock intramolecularly into the P(i)-pocket. Allosteric activation is predicted to involve a conformational change in Arg(734), which bridges the bound P(i) to Asp(762) in a key active site loop. Sequence alignments indicate that a comparable regulatory mechanism is likely to be conserved in Dictyostelium MHCK B-D and metazoan eukaryotic elongation factor-2 kinases.  相似文献   

15.
Q G Medley  J Gariépy  G P C?té 《Biochemistry》1990,29(38):8992-8997
One of the major sites phosphorylated on the Dictyostelium myosin II heavy chain by the Dictyostelium myosin II heavy-chain kinase A (MHCK A) is Thr-2029. Two synthetic peptides based on the sequence of the Dictyostelium myosin II heavy chain around Thr-2029 have been synthesized: MH-1 (residues 2020-2035; RKKFGESEKTKTKEFL-amide) and MH-2 (residues 2024-2035). Both peptides are substrates for MHCK A and are phosphorylated to a level of 1 mol of phosphate/mol. Tryptic digests indicate that the peptides are phosphorylated on the threonine corresponding to Thr-2029. When assays are initiated by the addition of MHCK A, the rate of phosphate incorporation into the peptides increases progressively for 4-6 min. The increasing activity of MHCK A over this time period is a result of autophosphorylation. Although each 130-kDa subunit of MHCK A can incorporate up to 10 phosphate molecules, 3 molecules of phosphate per subunit are sufficient to completely activate the kinase. Autophosphorylated MHCK A displays Vmax values of 2.2 and 0.6 mumol.min-1.mg-1 and Km values of 100 and 1200 microM with peptides MH-1 and MH-2, respectively. Unphosphorylated MHCK A displays a 50-fold lower Vmax with MH-1 but only a 2-fold greater Km. In the presence of Dictyostelium myosin II, the rate of autophosphorylation of MHCK A is increased 4-fold. If assays are performed at 4 degrees C (to slow the rate of MHCK A autophosphorylation), autophosphorylation can be shown to increase the activity of MHCK A with myosin II.  相似文献   

16.
Membrane-cytoskeletons were prepared from Dictyostelium amebas, and networks of actin and myosin II filaments were visualized on the exposed cytoplasmic surfaces of the cell membranes by fluorescence staining (Yumura, S., and T. Kitanishi-Yumura. 1990. Cell Struct. Funct. 15:355-364). Addition of ATP caused contraction of the cytoskeleton with aggregation of part of actin into several foci within the network, but most of myosin II was released via the foci. However, in the presence of 10 mM MgCl2, which stabilized myosin II filaments, myosin II remained at the foci. Ultrastructural examination revealed that, after contraction, only traces of monomeric myosin II remained at the foci. By contrast, myosin II filaments remained in the foci in the presence of 10 mM MgCl2. These observations suggest that myosin II was released not in a filamentous form but in a monomeric form. Using [gamma 32P]ATP, we found that the heavy chains of myosin II released from membrane-cytoskeletons were phosphorylated, and this phosphorylation resulted in disassembly of myosin filaments. Using ITP (a substrate for myosin II ATPase) and/or ATP gamma S (a substrate for myosin II heavy-chain kinase [MHCK]), we demonstrated that phosphorylation of myosin heavy chains occurred at the foci within the actin network, a result that suggests that MHCK was localized at the foci. These results together indicate that, during contraction, the heavy chains of myosin II that have moved toward the foci within the actin network are phosphorylated by a specific MHCK, with the resultant disassembly of filaments which are finally released from membrane-cytoskeletons. This series of reactions could represent the mechanism for the relocation of myosin II from the cortical region to the endoplasm.  相似文献   

17.
The alpha kinases are a widespread family of atypical protein kinases characterized by a novel type of catalytic domain. In this paper the peptide substrate recognition motifs for three alpha kinases, Dictyostelium discoideum myosin heavy chain kinase (MHCK) A and MHCK B and mammalian eukaryotic elongation factor-2 kinase (eEF-2K), were characterized by incorporating amino acid substitutions into a previously identified MHCK A peptide substrate (YAYDTRYRR) (Luo X. et al. (2001) J. Biol. Chem. 276, 17836-43). A lysine or arginine in the P+1 position on the C-terminal side of the phosphoacceptor threonine (P site) was found to be critical for peptide substrate recognition by MHCK A, MHCK B and eEF-2K. Phosphorylation by MHCK B was further enhanced 8-fold by a basic residue in the P+2 position whereas phosphorylation by MHCK A was enhanced 2- to 4-fold by basic residues in the P+2, P+3 and P+4 positions. eEF-2K required basic residues in both the P+1 and P+3 positions to recognize peptide substrates. eEF-2K, like MHCK A and MHCK B, exhibited a strong preference for threonine as the phosphoacceptor amino acid. In contrast, the Dictyostelium VwkA and mammalian TRPM7 alpha kinases phosphorylated both threonine and serine residues. The results, together with a phylogenetic analysis of the alpha kinase catalytic domain, support the view that the metazoan eEF-2Ks and the Dictyostelium MHCKs form a distinct subgroup of alpha kinases with conserved properties.  相似文献   

18.
Soluble myosin heavy chain kinases (MHC kinases) were partially purified from growth phase and aggregation-competent cells of Dictyostelium discoideum. In the aggregation-competent cells, two MHC kinases were distinguishable. One of these enzymes, called MHC kinase II, was inactivated by Ca2+ and calmodulin in a highly temperature-dependent reaction. A MHC kinase found in growth phase cells did not have these regulatory properties. Substrate specificities were analysed for MHC kinase II and for the MHC kinase from growth phase cells. Both enzymes phosphorylated threonine residues of the myosin heavy chains of D. discoideum and Physarum polycephalum. Phosphopeptide mapping of D. discoideum myosin and determination of the stoichiometry of its phosphorylation suggested the presence of two phosphorylation sites per heavy chain. Both sites were contained within a 38-kd chymotryptic fragment. The inactivation of MHC kinase II by Ca2+ plus calmodulin suggests this enzyme has a role in the regulation of myosin functions during the chemotactic response of a cell. The phosphorylated myosin had about one third the actin-activated Mg2+-ATPase activity of the non-phosphorylated myosin. Previous findings indicated that stimulation of D. discoideum cells with the chemo-attractant cAMP increases the cytoplasmic Ca2+ concentration. Under these conditions MHC kinase II might be inhibited and the dephosphorylated, more active form of myosin would accumulate.  相似文献   

19.
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.  相似文献   

20.
Myosin II disassembly in Dictyostelium discoideum is regulated by three structurally related myosin heavy chain kinases (myosin II heavy chain kinase A [MHCK-A], -B, and -C). We show that the WD repeat domain of MHCK-C is unique in that it mediates both substrate targeting and subcellular localization, revealing a target for regulation that is distinct from those of the other MHCKs.The ability of a cell to undergo highly specific modifications in shape during processes such as cytokinesis, cell migration, cell adhesion, and receptor capping is dependent, in large part, on the proper control of where and when myosin II contracts actin filaments in the cell (3, 4). In Dictyostelium discoideum, myosin II filament disassembly is regulated by at least three myosin II heavy chain kinases (myosin II heavy chain kinase A [MHCK-A], MHCK-B, and MHCK-C). The Dictyostelium MHCKs possess alpha kinase domains and carboxyl-terminal WD repeat domains (11, 13, 17). The WD repeat domains of MHCK-A and MHCK-B facilitate myosin II heavy chain phosphorylation by these kinases by binding directly to myosin II filaments (14, 15). However, the WD repeat domains play no detectable role in determining the subcellular localization of these kinases. Similar functions for the WD repeat domain of MHCK-C have not been explored, and there is nothing known about the signaling events regulating MHCK-C localization and activity, thus limiting comparisons among the MHCKs that could ultimately reveal distinct functions and mechanisms of regulation for these seemingly redundant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号