首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L. W. Zeng  R. S. Singh 《Genetics》1993,134(1):251-260
Haldane's rule (i.e., the preferential hybrid sterility and inviability of heterogametic sex) has been known for 70 years, but its genetic basis, which is crucial to the understanding of the process of species formation, remains unclear. In the present study, we have investigated the genetic basis of hybrid male sterility using Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. An introgression of D. sechellia Y chromosome into a fairly homogenous background of D. simulans did not show any effect of the introgressed Y on male sterility. The substitution of D. simulans Y chromosome into D. sechellia, and both reciprocal Y chromosome substitutions between D. simulans and D. mauritiana were unsuccessful. Introgressions of cytoplasm between D. simulans and D. mauritiana (or D. sechellia) also did not have any effect on hybrid male sterility. These results rule out the X-Y interaction hypothesis as a general explanation of Haldane's rule in this species group and indicate an involvement of an X-autosome interaction. Models of symmetrical and asymmetrical X-autosome interaction have been developed which explain the Y chromosome substitution results and suggest that evolution of interactions between different genetic elements in the early stages of speciation is more likely to be of an asymmetrical nature. The model of asymmetrical X-autosome interaction also predicts that different sets of interacting genes may be involved in different pairs of related species and can account for the observation that hybrid male sterility in many partially isolated species is often nonreciprocal or unidirectional.  相似文献   

2.
A. W. Davis  E. G. Noonburg    C. I. Wu 《Genetics》1994,137(1):191-199
F(1) hybrid females between the sibling species Drosophila simulans, Drosophila mauritiana and Drosophila sechellia are completely fertile. However, we have found that female sterility can be observed in F(2) backcross females who are homozygous for D. simulans X chromosomes and homozygous for autosomal regions from either D. mauritiana or D. sechellia. Our results indicate that neither D. mauritiana autosome (2 or 3) can cause complete female sterility in a D. simulans background. The simultaneous presence of homozygous regions from both the second and third chromosomes of D. mauritiana, however, causes nearly complete female sterility which cannot be accounted for by their individual effects. The two autosomes of D. sechellia may show a similar pattern. From the same crosses, we also obtained evidence against a role for cytoplasmic or maternal effects in causing hybrid male sterility between these species. Taken with the results presented elsewhere, these observations suggest that epistatic interactions between conspecific genes in a hybrid background may be the prevalent mode of hybrid sterility between recently diverged species.  相似文献   

3.
E. L. Cabot  A. W. Davis  N. A. Johnson    C. I. Wu 《Genetics》1994,137(1):175-189
We have analyzed the sterility associated with introgressions of the distal one-fourth of the X chromosome from either Drosophila mauritiana or Drosophila sechellia into the genome of Drosophila simulans using a series of visible and DNA markers. Because in Drosophila hybrids, male sterility is usually complete and is often tightly linked with each of several markers used in crosses, a simple genetic basis has generally been assumed. In our low resolution mapping experiment, we were not able to reject the null hypothesis that a single gene, introgressed from either D. mauritiana or D. sechellia, is the cause of male sterility. High resolution mapping, however, reveals a much more complex picture. At least three distinct factors from D. mauritiana, or two from D. sechellia, were identified that need to be jointly present to confer full sterility. Each individual factor by itself is relatively ineffective in causing sterility, or even a partial spermatogenic defect. Moreover, there appear to be more sterility factors on comparable introgressions from D. mauritiana than from D. sechellia. On the basis of these observations, we propose a model which suggests that multilocus weak allele interactions are a very common cause of reproductive incompatibility between closely related species. We also present theoretical argument and empirical evidence against extrapolating the results of within-species analysis to interpret the genetic basis of species differences. The implications of this model on the theories of evolution of species differences and the attempt to understand the mechanisms of hybrid sterility/inviability at the molecular level are discussed.  相似文献   

4.
Species maintain their identity through reproductive isolating mechanisms, which are broadly classified into prezygotic and postzygotic isolating mechanisms. In the Drosophila bipectinata species complex, investigations were made on the degree of crossability (a prezygotic isolating mechanism) and the causes of hybrid male sterility (a postzygotic isolating mechanism) to analyse the phylogenetic relationship. Among the four species, D. bipectinata crosses with Drosophila parabipectinata freely in one direction and both of them also cross with Drosophila malerkotliana easily but it is difficult to cross all the three species with Drosophila pseudoananassae . In the hybrids involving D. pseudoananassae , no sperm were observed indicating high degree of perturbance during spermatogenesis while in the other hybrids immotile sperm were present indicating comparatively less disturbance during spermatogenesis. Testis size, which is an indicator of degree of perturbance during spermatogenesis and used as a proxy for sterility was measured in the four species and their hybrids. It was of same size in D. bipectinata , D. parabipectinata and D. malerkotliana but larger in D. pseudoananassae . In the hybrids involving D. pseudoananassae , testes were atrophied while in other hybrids it was larger. Since, the size of testis does not exhibit uniform pattern of variation in hybrids, it cannot be used as a good indicator for sterility. Therefore, we also measured the size of seminal vesicles (storing organ of sperm) in the four species and their hybrids. Interestingly, the size of seminal vesicles was reduced uniformly in all the hybrids indicating its use as better proxy for sterility. Further, the seminal vesicle size in D. pseudoananassae was smaller than that in the other three species. These observations provide evidence for phylogenetic proximity of D. bipectinata , D. parabipectinata and D. malerkotliana and their remote relationships with D. pseudoananassae .  相似文献   

5.
Barbash DA  Ashburner M 《Genetics》2003,163(1):217-226
Hybrid daughters of crosses between Drosophila melanogaster females and males from the D. simulans species clade are fully viable at low temperature but have agametic ovaries and are thus sterile. We report here that mutations in the D. melanogaster gene Hybrid male rescue (Hmr), along with unidentified polymorphic factors, rescue this agametic phenotype in both D. melanogaster/D. simulans and D. melanogaster/D. mauritiana F(1) female hybrids. These hybrids produced small numbers of progeny in backcrosses, their low fecundity being caused by incomplete rescue of oogenesis as well as by zygotic lethality. F(1) hybrid males from these crosses remained fully sterile. Hmr(+) is the first Drosophila gene shown to cause hybrid female sterility. These results also suggest that, while there is some common genetic basis to hybrid lethality and female sterility in D. melanogaster, hybrid females are more sensitive to fertility defects than to lethality.  相似文献   

6.
Almost nothing is known about the identity of the genes causing reproductive isolation between species. As a first step towards molecular isolation of a 'speciation gene', I mapped and partly characterized a gene causing hybrid male sterility in Drosophila. This analysis shows that sterility of D. melanogaster males who carry the 'dot' fourth chromosome from D. simulans is due entirely to a very small region of the D. simulans chromosome (including only about 5 salivary gland bands or approximately 250 kb of DNA). Thus the hybrid sterility effect of the D. simulans fourth chromosome is almost surely due to a single gene of very large effect (here named hms, hybrid male sterile). Hms is zygotically acting, and the D. simulans allele of hms is completely recessive. Furthermore, complementation tests suggest that hms is not an allele of any known locus in D. melanogaster.  相似文献   

7.
Chang AS  Noor MA 《Genetics》2007,176(1):343-349
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.  相似文献   

8.
Introgression of Drosophila simulans genes into the Drosophila melanogaster genome provides an ideal system for analysing genetic incompatibility between species. Females and males homozygous for the introgression Int(2L)S (cytologically, 30F3-31C5 to 36A2-7) are sterile. Genetic dissection of the proximal part of the introgression (34D1-3 to 36A2-7) has indicated that introgressions of 0.7-1.6 Mb size result in male sterility when homozygous. In the present analysis we examine the distal part of the introgression (30F3-31C to 34D1-3) and reveal that introgressions with similar DNA content (1.8-2.1 Mb) result in male sterility. Compared with introgressions between the more closely related species Drosophila mauritiana and D. simulans, the minimal introgression resulting in male sterility is smaller by several-fold.  相似文献   

9.
Recent studies suggest that chromosomal rearrangements play a significant role in speciation by preventing recombination and maintaining species persistence despite interspecies gene flow. Factors conferring adaptation or reproductive isolation are maintained in rearranged regions in the face of hybridization, while such factors are eliminated from collinear regions. As a direct test of this rearrangement model, we evaluated the genetic basis of hybrid male sterility in a sympatric species pair, Drosophila pseudoobscura pseudoobscura and D. persimilis, and an allopatric species pair, D. pseudoobscura bogotana and D. persimilis. Our results are consistent with the proposed model: virtually all of the sterility factors in the former pair are associated with three inverted regions, whereas sterility factors are present in the collinear regions in the latter pair. These findings indicate recombination and selection may have eliminated sterility factors outside the inverted regions between D. p. pseudoobscura and D. persimilis, suggesting chromosomal rearrangements may facilitate species persistence despite hybridization.  相似文献   

10.
The molecular basis of short term cold resistance (indexed as chill-coma recovery time) has been mostly addressed in D. melanogaster, where candidate genes (Dca (also known as smp-30) and Frost (Fst)) have been identified. Nevertheless, in Drosophila, the ability to tolerate short term exposure to low temperatures evolved several times independently. Therefore, it is unclear whether variation in the same candidate genes is also responsible for short term cold resistance in distantly related Drosophila species. It should be noted that Dca is a candidate gene for cold resistance in the Sophophora subgenus only, since there is no orthologous gene copy in the Drosophila subgenus. Here we show that, in D. americana (Drosophila subgenus), there is a north-south gradient for a variant at the 5' non-coding region of regucalcin (a Dca-like gene; in D. melanogaster the proteins encoded by the two genes share 71.9% amino acid identities) but in our D. americana F2 association experiment there is no association between this polymorphism and chill-coma recovery times. Moreover, we found no convincing evidence that this gene is up-regulated after cold shock in both D. americana and D. melanogaster. Size variation in the Fst PEST domain (putatively involved in rapid protein degradation) is observed when comparing distantly related Drosophila species, and is associated with short term cold resistance differences in D. americana. Nevertheless, this effect is likely through body size variation. Moreover, we show that, even at two hours after cold shock, when up-regulation of this gene is maximal in D. melanogaster (about 48 fold expression change), in D. americana this gene is only moderately up-regulated (about 3 fold expression change). Our work thus shows that there are important differences regarding the molecular basis of cold resistance in distantly related Drosophila species.  相似文献   

11.
Previous reports have suggested that the Nucleoporin 160 (Nup160) gene of Drosophila simulans (Nup160(sim)) causes the hybrid inviability, female sterility, and morphological anomalies that are observed in crosses with D. melanogaster. Here we have confirmed this observation by transposon excision from the P{EP}Nup160(EP372) insertion mutation of D. melanogaster. Null mutations of the Nup160 gene resulted in the three phenotypes caused by Nup160(sim), but revertants of the gene did not. Interestingly, several mutations produced by excision partially complemented hybrid inviability, female sterility, or morphological anomalies. In the future, these mutations will be useful to further our understanding of the developmental mechanisms of reproductive isolation. Based on our analyses with the Nup160(sim) introgression line, the lethal phase of hybrid inviability was determined to be during the early pupal stage. Our analysis also suggested that homozygous Nup160(sim) in D. melanogaster leads to slow development. Thus, Nup160(sim) is involved in multiple aspects of reproductive isolation between these two species.  相似文献   

12.
Sawamura K  Karr TL  Yamamoto MT 《Genetica》2004,120(1-3):253-260
Interspecific crosses between Drosophila melanogaster and Drosophila simulans usually produce sterile unisexual hybrids. The barrier preventing genetic analysis of hybrid inviability and sterility has been taken away by the discovery of a D. simulans strain which produces fertile female hybrids. D. simulans genes in the cytological locations of 21A1 to 22C1-23B1 and 30F3-31C5 to 36A2-7 have been introgressed into the D. melanogaster genetic background by consecutive backcrosses. Flies heterozygous for the introgression are fertile, while homozygotes are sterile both in females and males. The genes responsible for the sterility have been mapped in the introgression. The male sterility is caused by the synergistic effect of multiple genes, while the female sterility genes have been localized to a 170 kb region (32D2 to 32E4) containing 20 open reading frames. Thus, the female sterility might be attributed to a single gene with a large effect. We have also found that the Lethal hybrid rescue mutation which prevents the inviability of male hybrids from the cross of D. melanogaster females and D. simulans males cannot rescue those carrying the introgression, suggesting that D. simulans genes maybe non-functional in this hybrid genotype. The genes responsible for the inviability have not been separated from the female sterility genes by recombination.  相似文献   

13.
Advances in the genetics of reproductive isolation in Drosophila   总被引:2,自引:0,他引:2  
E Zouros 《Génome》1989,31(1):211-220
Speciation genetics is defined as the study of genetic events and processes that differentiate the probabilities that genetic material from individual members of a population will co-occur in individuals of some future generation. It follows that phenotypic attributes that contribute to this differentiation of probabilities (e.g., mating preferences, sterility, or infertility of individuals from certain types of matings) constitute the phenotype of speciation, and genetic loci that may affect these phenotypic attributes can be considered as speciation genes. The literature on genetic differences between hybridizable species of Drosophila that are responsible for morphological differences, mating preferences, hybrid inviability, and hybrid sterility are reviewed with special reference to the species pair D. mojavensis - D. arizonensis. The case for the involvement of karyotypic changes in speciation in rodents is briefly discussed. It is concluded that no major advance has been made in the speciation genetics of Drosophila since Dobzhansky initiated the field 40 years ago. Yet, the identification of several gene loci that cause hybrid inviability or sterility may open the way to the understanding of reproductive isolation at the molecular level. It is not clear whether this approach will lead to general molecular mechanisms underlying the speciation process.  相似文献   

14.
L. W. Zeng  R. S. Singh 《Genetics》1993,135(1):135-147
We have attempted to estimate the number of genes involved in postzygotic reproductive isolation between two closely related species, Drosophila simulans and Drosophila sechellia, by a novel approach that involves the use of high resolution two-dimensional gel electrophoresis (2DE) to examine testis proteins in parents, hybrids and fertile and sterile backcross progenies. The important results that have emerged from this study are as follows: (1) about 8% of about 1000 proteins examined showed divergence (presence/absence) between the two species; (2) by tracing individual proteins in parental, hybrid and backcross males, we were able to associate the divergent proteins with different chromosomes and found that most divergent proteins are associated with autosomes and very few with X chromosome, Y chromosome and cytoplasm; (3) when proteins showing both quantitative and qualitative differences between the two species were examined in F(1) hybrid males, most (97.4%) proteins were expressed at levels between the two parents and no sign of large scale changes in spot density was observed. All the proteins observed in the two parental species were present in F(1) hybrid males except two species-specific proteins that may be encoded (or regulated) by sex chromosomes; (4) when different fertile and sterile backcross male testes were compared, a few D. sechellia-specific proteins were identified to be consistently associated with male sterility. These results along with the observation that a large proportion (23.6%) of first generation backcross males were fertile show that hybrid male sterility between D. simulans and D. sechellia involves a relatively small number of genes. Role of large scale genetic changes due to general genome incompatibility is not supported. The results also suggest that the large effect of X chromosome on hybrid male sterility is not due to higher divergence of X chromosome than autosomes.  相似文献   

15.
A. W. Davis  C. I. Wu 《Genetics》1996,143(3):1287-1298
How many genes contribute to reproductive isolation between closely related species? We determined the number of genes located in the 9D-12B region of the Drosophila mauritiana X chromosome that cause hybrid male sterility in a D. simulans background. Previous low resolution studies suggested that a single hybrid sterility factor was associated with this region. In this study, by taking advantage of a cluster of visible and DNA markers, we identified three D. mauritiana factors in this region and then subjected one of them to detailed analysis. This factor again turned out to be comprised of three factors; one of which, mapped to within 200 kb, may in fact be two factors. The title refers to this exercise of splitting sterile introgressions into ever smaller ones, each of which retains partial or full sterility effects. In a region representing a mere 3% of the Drosophila genome, no fewer than six loci of hybrid sterility were identified between two sibling species that have not shown clear divergence at the molecular level. These results suggest that levels of genetic divergence between closely related species may be quite high for functionally important traits even when the opposite is true for randomly chosen loci.  相似文献   

16.
Sawamura K  Roote J  Wu CI  Yamamoto MT 《Genetics》2004,166(2):789-796
Recent genetic analyses of closely related species of Drosophila have indicated that hybrid male sterility is the consequence of highly complex synergistic effects among multiple genes, both conspecific and heterospecific. On the contrary, much evidence suggests the presence of major genes causing hybrid female sterility and inviability in the less-related species, D. melanogaster and D. simulans. Does this contrast reflect the genetic distance between species? Or, generally, is the genetic basis of hybrid male sterility more complex than that of hybrid female sterility and inviability? To clarify this point, the D. simulans introgression of the cytological region 34D-36A to the D. melanogaster genome, which causes recessive male sterility, was dissected by recombination, deficiency, and complementation mapping. The 450-kb region between two genes, Suppressor of Hairless and snail, exhibited a strong effect on the sterility. Males are (semi-)sterile if this region of the introgression is made homozygous or hemizygous. But no genes in the region singly cause the sterility; this region has at least two genes, which in combination result in male sterility. Further, the males are less fertile when heterozygous with a larger introgression, which suggests that dominant modifiers enhance the effects of recessive genes of male sterility. Such an epistatic view, even in the less-related species, suggests that the genetic complexity is special to hybrid male sterility.  相似文献   

17.
Noor MA 《Genetical research》2005,85(2):119-125
Divergence between species in regulatory pathways may contribute to hybrid incompatibilities such as sterility. Consistent with this idea, genes involved in male fertility often evolve faster than most other genes both in amino acid sequence and in expression. Previously, we identified a panel of male-specific genes under-expressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to pure species, and we showed that this under-expression is associated with infertility. In a preliminary effort to assess the generalities in the patterns of evolution of these genes, I examined patterns of mRNA expression in three of these genes in sterile F 1 hybrid males of D. pseudoobscura and D. persimilis . F 1 hybrid males bearing D. persimilis X chromosomes under-expressed all these genes relative to the parental species, while hybrids bearing D. pseudoobscura X chromosomes under-expressed two of these three genes. Interestingly, the third gene, CG5762 , has undergone extensive amino acid evolution within the D. pseudoobscura species group, possibly driven by positive natural selection. We conclude that some of the same genes exhibit disruptions in expression within each of the two species groups, which could suggest commonalities in the regulatory architecture of sterility in these groups. Alternative explanations are also considered.  相似文献   

18.
The no-on-transient A (nonA) gene encodes a putative RNA-binding protein, and mutations in this gene are known to affect vision, male courtship song and viability in Drosophila melanogaster. Here we have sequenced the coding region of the nonA gene of Drosophila littoralis and compared it with those of Drosophila virilis and D. melanogaster. All portions of nonA appeared to be conserved between D. littoralis and D. virilis, while the 5' region of the gene of these two species showed high divergence from that of a more distantly-related species, D. melanogaster. The same was true for the glycine repeat regions. No significant deviation from neutrality was observed in the analysis of intraspecific nucleotide variation in 5' or 3' region of the nonA gene in D. littoralis population. Also, comparison of D. littoralis sequences with homologous sequence of D. virilis suggests that the gene is evolving neutrally in D. virilis group. Divergence of the 5' regions between D. virilis group species and D. melanogaster could be a result of positive selection, but this finding is obscured by the long divergence time of the species groups.  相似文献   

19.
M. F. Palopoli  C. I. Wu 《Genetics》1994,138(2):329-341
To study the genetic differences responsible for the sterility of their male hybrids, we introgressed small segments of an X chromosome from Drosophila simulans into a pure Drosophila mauritiana genetic background, then assessed the fertility of males carrying heterospecific introgressions of varying size. Although this analysis examined less than 20% of the X chromosome (roughly 5% of the euchromatic portion of the D. simulans genome), and the segments were introgressed in only one direction, a minimum of four factors that contribute to hybrid male sterility were revealed. At least two of the factors exhibited strong epistasis: males carrying either factor alone were consistently fertile, whereas males carrying both factors together were always sterile. Distinct spermatogenic phenotypes were observed for sterile introgressions of different lengths, and it appeared that an interaction between introgressed segments also influenced the stage of spermatogenic defect. Males with one category of introgression often produced large quantities of motile sperm and were observed copulating, but never inseminated females. Evidently these two species have diverged at a large number of loci which have varied effects on hybrid male fertility. By extrapolation, we estimate that there are at least 40 such loci on the X chromosome alone. Because these species exhibit little DNA-sequence divergence at arbitrarily chosen loci, it seems unlikely that the extensive functional divergence observed could be due mainly to random genetic drift. Significant epistasis between conspecific genes appears to be a common component of hybrid sterility between recently diverged species of Drosophila. The linkage relationships of interacting factors could shed light on the role played by epistatic selection in the dynamics of the allele substitutions responsible for reproductive barriers between species.  相似文献   

20.
Sweigart AL  Fishman L  Willis JH 《Genetics》2006,172(4):2465-2479
Much evidence has shown that postzygotic reproductive isolation (hybrid inviability or sterility) evolves by the accumulation of interlocus incompatibilities between diverging populations. Although in theory only a single pair of incompatible loci is needed to isolate species, empirical work in Drosophila has revealed that hybrid fertility problems often are highly polygenic and complex. In this article we investigate the genetic basis of hybrid sterility between two closely related species of monkeyflower, Mimulus guttatus and M. nasutus. In striking contrast to Drosophila systems, we demonstrate that nearly complete hybrid male sterility in Mimulus results from a simple genetic incompatibility between a single pair of heterospecific loci. We have genetically mapped this sterility effect: the M. guttatus allele at the hybrid male sterility 1 (hms1) locus acts dominantly in combination with recessive M. nasutus alleles at the hybrid male sterility 2 (hms2) locus to cause nearly complete hybrid male sterility. In a preliminary screen to find additional small-effect male sterility factors, we identified one additional locus that also contributes to some of the variation in hybrid male fertility. Interestingly, hms1 and hms2 also cause a significant reduction in hybrid female fertility, suggesting that sex-specific hybrid defects might share a common genetic basis. This possibility is supported by our discovery that recombination is reduced dramatically in a cross involving a parent with the hms1-hms2 incompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号