首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cranial neural crest cells (NCCs) migrate into the pharyngeal arches in three primary streams separated by two cranial neural crest (NC)-free zones. Multiple tissues have been implicated in the guidance of cranial NCC migration; however, the signals provided by these tissues have remained elusive. We investigate the function of semaphorins (semas) and their receptors, neuropilins (nrps), in cranial NCC migration in zebrafish. We find that genes of the sema3F and sema3G class are expressed in the cranial NC-free zones, while nrp2a and nrp2b are expressed in the migrating NCCs. sema3F/3G expression is expanded homogeneously in the head periphery through which the cranial NCCs migrate in lzr/pbx4 mutants, in which the cranial NC streams are fused. Antisense morpholino knockdown of Sema3F/3G or Nrp2 suppresses the abnormal cranial NC phenotype of lzr/pbx4 mutants, demonstrating that aberrant Sema3F/3G-Nrp2 signaling is responsible for this phenotype and suggesting that repulsive Sema3F/3G-Npn2 signaling normally contributes to the guidance of migrating cranial NCCs. Furthermore, global over-expression of sema3Gb phenocopies the aberrant cranial NC phenotype of lzr/pbx4 mutants when endogenous Sema3 ligands are knocked down, consistent with a model in which the patterned expression of Sema3 ligands in the head periphery coordinates the migration of Nrp-expressing cranial NCCs.  相似文献   

2.
In zebrafish embryos, each myotome is typically innervated by three primary motoneurons (PMNs): the caudal primary (CaP), middle primary (MiP) and rostral primary (RoP). PMN axons first exit the spinal cord through a single exit point located at the midpoint of the overlying somite, which is formed beneath the CaP cell body and is pioneered by the CaP axon. However, the placement of CaP cell bodies with respect to corresponding somites is poorly understood. Here, we determined the early events in CaP cell positioning using neuropilin 1a (nrp1a):gfp transgenic embryos in which CaPs were specifically labeled with GFP. CaP cell bodies first exhibit an irregular pattern in presence of newly formed corresponding somites and then migrate to achieve their proper positions by axonogenesis stages. CaPs are generated in excess compared with the number of somites, and two CaPs often overlap at the same position through this process. Next, we showed that CaP cell bodies remain in the initial irregular positions after knockdown of Neuropilin1a, a component of the class III semaphorin receptor. Irregular CaP position frequently results in aberrant double exit points of motor axons, and secondary motor axons form aberrant exit points following CaP axons. Its expression pattern suggests that sema3ab regulates the CaP position. Indeed, irregular CaP positions and exit points are induced by Sema3ab knockdown, whose ectopic expression can alter the position of CaP cell bodies. Results suggest that Semaphorin-Neuropilin signaling plays an important role in position fine-tuning of CaP cell bodies to ensure proper exit points of motor axons.  相似文献   

3.
The medial habenular nuclei of the zebrafish diencephalon, which lie bilateral to the pineal complex, exhibit left-right differences in their neuroanatomy, gene expression profiles and axonal projections to the unpaired midbrain target--the interpeduncular nucleus (IPN). Efferents from the left habenula terminate along the entire dorsoventral extent of the IPN, whereas axons from the right habenula project only to the ventral IPN. How this left-right difference in connectivity is established and the factors involved in differential target recognition are unknown. Prior to IPN innervation, we find that only the left habenula expresses the zebrafish homologue of Neuropilin1a (Nrp1a), a receptor for class III Semaphorins (Sema3s). Directional asymmetry of nrp1a expression relies on Nodal signaling and the presence of the left-sided parapineal organ. Loss of Nrp1a, through parapineal ablation or depletion by antisense morpholinos, prevents left habenular neurons from projecting to the dorsal IPN. Selective depletion of Sema3D, but not of other Sema family members, similarly disrupts innervation of the dorsal IPN. Conversely, Sema3D overexpression results in left habenular projections that extend to the dorsal IPN, as well as beyond the target. The results indicate that Sema3D acts in concert with Nrp1a to guide neurons on the left side of the brain to innervate the target nucleus differently than those on the right side.  相似文献   

4.
Semaphorins are a large class of proteins that function throughout the nervous system to guide axons. It had previously been shown that Semaphorin 5A (Sema5A) was a bifunctional axon guidance cue for mammalian midbrain neurons. We found that zebrafish sema5A was expressed in myotomes during the period of motor axon outgrowth. To determine whether Sema5A functioned in motor axon guidance, we knocked down Sema5A, which resulted in two phenotypes: a delay in motor axon extension into the ventral myotome and aberrant branching of these motor axons. Both phenotypes were rescued by injection of full-length rat Sema5A mRNA. However, adding back RNA encoding the sema domain alone significantly rescued the branching phenotype in sema5A morphants. Conversely, adding back RNA encoding the thrombospondin repeat (TSR) domain alone into sema5A morphants exclusively rescued delay in ventral motor axon extension. Together, these data show that Sema5A is a bifunctional axon guidance cue for vertebrate motor axons in vivo. The TSR domain promotes growth of developing motor axons into the ventral myotome whereas the sema domain mediates repulsion and keeps these motor axons from branching into surrounding myotome regions.  相似文献   

5.
Zebrafish semaphorin 1b (sema Z1b) is a new member of the semaphorin family, related to mammalian sema D/III. It is expressed in rhombomeres three and five, and in the posterior half of newly formed somites which is avoided by ventrally extending motor axons. Embryos injected at the 1-2 cell stage with synthetic sema Z1b mRNA developed normally but many (63%) showed missing or severely stunted ventral motor nerves. Other axons, somites, and hindbrain rhombomeres were not affected. No abnormalities were seen in control embryos injected with lacZ mRNA. Sema Z1b might normally influence the midsegmental pathway choice of the ventrally extending motor axons by contributing to a repulsive domain in the posterior somite.  相似文献   

6.
VEGF-A and Semaphorin3A: Modulators of vascular sympathetic innervation   总被引:2,自引:0,他引:2  
Sympathetic nerve activity regulates blood pressure by altering peripheral vascular resistance. Variations in vascular sympathetic innervation suggest that vascular-derived cues promote selective innervation of particular vessels during development. As axons extend towards peripheral targets, they migrate along arterial networks following gradients of guidance cues. Collective ratios of these gradients may determine whether axons grow towards and innervate vessels or continue past non-innervated vessels towards peripheral targets. Utilizing directed neurite outgrowth in a three-dimensional (3D) co-culture, we observed increased axon growth from superior cervical ganglion explants (SCG) towards innervated compared to non-innervated vessels, mediated in part by vascular endothelial growth factor (VEGF-A) and Semaphorin3A (Sema3A) which both signal via neuropilin-1 (Nrp1). Exogenous VEGF-A, delivered by high-expressing VEGF-A-LacZ vessels or by rhVEGF-A/alginate spheres, increased sympathetic neurite outgrowth while exogenous rhSema3A/Fc decreased neurite outgrowth. VEGF-A expression is similar between the innervated and non-innervated vessels examined. Sema3A expression is higher in non-innervated vessels. Spatial gradients of Sema3A and VEGF-A may promote differential Nrp1 binding. Vessels expressing high levels of Sema3A favor Nrp1-PlexinA1 signaling, producing chemorepulsive cues limiting sympathetic neurite outgrowth and vascular innervation; while low Sema3A expressing vessels favor Nrp1-VEGFR2 signaling providing chemoattractive cues for sympathetic neurite outgrowth and vascular innervation.  相似文献   

7.
Dpysls (CRMPs) that were initially identified as mediator proteins of Semaphorin3a (Sema3a) signaling are involved in neuronal polarity and axon elongation in cultured neurons. Previous studies have shown that knockdown of neuropilin1a, one of the sema3a receptors, exhibited ectopic primary motor neurons (PMNs) outside of the spinal cord in zebrafish. However, downstream molecules of sema3a signaling involved in the positioning of motor neurons are largely unknown. Here, we addressed the role of Dpysl2 (CRMP2) and Dpysl3 (CRMP4) in the positioning of PMNs in the zebrafish spinal cord. We found that the knockdown of dpysls by antisense morpholino oligonucleotides (AMO) causes abnormal positioning of caudal primary (CaP) motor neurons outside the spinal cord. The knockdown of cdk5 and dyrk2 by AMO also caused similar phenotype in the positioning of CaP motor neurons, and this phenotype was rescued by co‐injection of phosphorylation‐mimic type dpysl2 mRNA. These results suggest that the phosphorylation of Dpysl2 and Dpysl3 by Cdk5 and Dyrk2 is required for correct positioning of CaP motor neurons in the zebrafish spinal cord. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 911–920, 2013  相似文献   

8.
Semaphorins are a large family of secreted and cell surface molecules that guide neural growth cones to their targets during development. Some semaphorins are expressed in cells and tissues beyond the nervous system suggesting the possibility that they function in the development of non-neural tissues as well. In the trunk of zebrafish embryos endothelial precursors (angioblasts) are located ventral and lateral to the somites. The angioblasts migrate medially and dorsally along the medial surface of the somites to form the dorsal aorta just ventral to the notochord. Here we show that in zebrafish Sema3a1 is involved in angioblast migration in vivo. Expression of sema3a1 in somites and neuropilin 1, which encodes for a component of the Sema3a receptor, in angioblasts suggested that Sema3a1 regulates the pathway of the dorsally migrating angioblasts. Antisense knockdown of Sema3a1 inhibited the formation of the dorsal aorta. Induced ubiquitous expression of sema3a1 in hsp70:(gfp)sema3a1(myc) transgenic embryos inhibited migration of angioblasts ventral and lateral to the somites and retarded development of the dorsal aorta, resulting in severely reduced blood circulation. Furthermore, analysis of cells that express angioblast markers following induced expression of sema3a1 or in a mutant that changes the expression of sema3a1 in the somites confirmed these results. These data implicate Sema3a1, a guidance factor for neural growth cones, in the development of the vascular system.  相似文献   

9.
Plexina1 autoinhibition by the plexin sema domain   总被引:5,自引:0,他引:5  
Semaphorin 3A (Sema3A) binds to neuropilin-1 (NP1) and activates the transmembrane Plexin to transduce a repulsive axon guidance signal. Here, we show that Sema3 signals are transduced equally effectively by PlexinA1 or PlexinA2, but not by PlexinA3. Deletion analysis of the PlexinA1 ectodomain demonstrates that the sema domain prevents PlexinA1 activation in the basal state. Sema-deleted PlexinA1 is constitutively active, producing cell contraction, growth cone collapse, and inhibition of neurite outgrowth. The sema domain of PlexinA1 physically associates with the remainder of the PlexinA1 ectodomain and can reverse constitutive activation. Both the sema portion and the remainder of the ectodomain of PlexinA1 associate with NP1 in a Sema3A-independent fashion. Plexin A1 is autoinhibited by its sema domain, and Sema3A/NP1 releases this inhibition.  相似文献   

10.
Gap junctions are proteinaceous channels that reside at the plasma membrane and permit the exchange of ions, metabolites, and second messengers between neighboring cells. Connexin proteins are the subunits of gap junction channels. Mutations in zebrafish cx43 cause the short fin (sof(b123)) phenotype which is characterized by short fins due to defects in length of the bony fin rays. Previous findings from our lab demonstrate that Cx43 is required for both cell proliferation and joint formation during fin regeneration. Here we demonstrate that semaphorin3d (sema3d) functions downstream of Cx43. Semas are secreted signaling molecules that have been implicated in diverse cellular functions such as axon guidance, cell migration, cell proliferation, and gene expression. We suggest that Sema3d mediates the Cx43-dependent functions on cell proliferation and joint formation. Using both in situ hybridization and quantitative RT-PCR, we validated that sema3d expression depends on Cx43 activity. Next, we found that knockdown of Sema3d recapitulates all of the sof(b123) and cx43-knockdown phenotypes, providing functional evidence that Sema3d acts downstream of Cx43. To identify the potential Sema3d receptor(s), we evaluated gene expression of neuropilins and plexins. Of these, nrp2a, plxna1, and plxna3 are expressed in the regenerating fin. Morpholino-mediated knockdown of plxna1 did not cause cx43-specific defects, suggesting that PlexinA1 does not function in this pathway. In contrast, morpholino-mediated knockdown of nrp2a caused fin overgrowth and increased cell proliferation, but did not influence joint formation. Moreover, morpholino-mediated knockdown of plxna3 caused short segments, influencing joint formation, but did not alter cell proliferation. Together, our findings reveal that Sema3d functions in a common molecular pathway with Cx43. Furthermore, functional evaluation of putative Sema3d receptors suggests that Cx43-dependent cell proliferation and joint formation utilize independent membrane-bound receptors to mediate downstream cellular phenotypes.  相似文献   

11.
12.
Previously, we proposed the following mechanism for konjac ceramide (kCer)-mediated neurite outgrowth inhibition: kCer binds to Nrp as a Sema3A agonist, resulting in Nrp1/PlexA complex formation and activation of the Sema3A signaling pathway to induce phosphorylation of CRMP2 and microtubule depolymerization. The Sema3A/Nrp1 signaling pathway is known to be also expressed in normal human keratinocytes. To determine whether kCer can function in human keratinocytes as it does in neurites, that is, if it can bind to Nrp1 in place of Sema3A, we studied the effect of kCer on HaCaT cell migration activity. Using a trans-well chamber assay, we compared the effects of Sema3A and kCer on serum-derived cell migration activity. kCer showed Sema3A-like suppression of cell migration activity and induction of cellular Cofilin phosphorylation. In addition, kCer and Sema3A inhibited histamine (His)-enhanced migration of immature HaCaT cells. We have demonstrated that kCer does not interact with histaime receptors H1R or H4R directly, but we speculate that kCer may transduce a signal downstream of the His signaling pathway.  相似文献   

13.
Primary motoneurons, the earliest developing spinal motoneurons in zebrafish, have highly stereotyped axon projections. Although much is known about the development of these neurons, the molecular cues guiding their axons have not been identified. In a screen designed to reveal mutations affecting motor axons, we isolated two mutations in the stumpy gene that dramatically affect pathfinding by the primary motoneuron, CaP. In stumpy mutants, CaP axons extend along the common pathway, a region shared by other primary motor axons, but stall at an intermediate target, the horizontal myoseptum, and fail to extend along their axon-specific pathway during the first day of development. Later, most CaP axons progress a short distance beyond the horizontal myoseptum, but tend to stall at another intermediate target. Mosaic analysis revealed that stumpy function is needed both autonomously in CaP and non-autonomously in other cells. stumpy function is also required for axons of other primary and secondary motoneurons to progress properly past intermediate targets and to branch. These results reveal a series of intermediate targets involved in motor axon guidance and suggest that stumpy function is required for motor axons to progress from proximally located intermediate targets to distally located ones.  相似文献   

14.
The wiring of neuronal circuits requires complex mechanisms to guide axon subsets to their specific target with high precision. To overcome the limited number of guidance cues, modulation of axon responsiveness is crucial for specifying accurate trajectories. We report here a novel mechanism by which ligand/receptor co-expression in neurons modulates the integration of other guidance cues by the growth cone. Class 3 semaphorins (Sema3 semaphorins) are chemotropic guidance cues for various neuronal projections, among which are spinal motor axons navigating towards their peripheral target muscles. Intriguingly, Sema3 proteins are dynamically expressed, forming a code in motoneuron subpopulations, whereas their receptors, the neuropilins, are expressed in most of them. Targeted gain- and loss-of-function approaches in the chick neural tube were performed to enable selective manipulation of Sema3C expression in motoneurons. We show that motoneuronal Sema3C regulates the shared Sema3 neuropilin receptors Nrp1 and Nrp2 levels in opposite ways at the growth cone surface. This sets the respective responsiveness to exogenous Nrp1- and Nrp2-dependent Sema3A, Sema3F and Sema3C repellents. Moreover, in vivo analysis revealed a context where this modulation is essential. Motor axons innervating the forelimb muscles are exposed to combined expressions of semaphorins. We show first that the positioning of spinal nerves is highly stereotyped and second that it is compromised by alteration of motoneuronal Sema3C. Thus, the role of the motoneuronal Sema3 code could be to set population-specific axon sensitivity to limb-derived chemotropic Sema3 proteins, therefore specifying stereotyped motor nerve trajectories in their target field.  相似文献   

15.
Class 3 semaphorins were initially described as axonal growth cone guidance molecules that signal through plexin and neuropilin coreceptors and since then have been established to be regulators of vascular development. Semaphorin 3e (Sema3e) has been shown previously to repel endothelial cells and is the only class 3 semaphorin known to be capable of signaling via a plexin receptor without a neuropilin coreceptor. Sema3e signals through plexin D1 (Plxnd1) to regulate vascular patterning by modulating the cytoskeleton and focal adhesion structures. We showed recently that semaphorin 3d (Sema3d) mediates endothelial cell repulsion and pulmonary vein patterning during embryogenesis. Here we show that Sema3d and Sema3e affect human umbilical vein endothelial cells similarly but through distinct molecular signaling pathways. Time-lapse imaging studies show that both Sema3d and Sema3e can inhibit cell motility and migration, and tube formation assays indicate that both can impede tubulogenesis. Endothelial cells incubated with either Sema3d or Sema3e demonstrate a loss of actin stress fibers and focal adhesions. However, the addition of neuropilin 1 (Nrp1)-blocking antibody or siRNA knockdown of Nrp1 inhibits Sema3d-mediated, but not Sema3e-mediated, cytoskeletal reorganization, and siRNA knockdown of Nrp1 abrogates Sema3d-mediated, but not Sema3e-mediated, inhibition of tubulogenesis. On the other hand, endothelial cells deficient in Plxnd1 are resistant to endothelial repulsion mediated by Sema3e but not Sema3d. Unlike Sema3e, Sema3d incubation results in phosphorylation of Akt in human umbilical vein endothelial cells, and inhibition of the PI3K/Akt pathway blocks the endothelial guidance and cytoskeletal reorganization functions of Sema3d but not Sema3e.  相似文献   

16.
The semaphorin gene family contains a large number of secreted and transmembrane proteins; some function as repulsive and attractive cues of axon guidance during development. Here, we report cloning and characterization of zebrafish transmembrane semaphorin gene, semaphorin 6D (sema6D). Sema6D is expressed predominantly in the nervous system during embryogenesis, as determined by in situ hybridization. We also found that Sema6D binds Plexin-A1 in vitro, but not other Plexins. It induces the repulsion of dorsal root ganglion axons, but not sympathetic axons. Consequently, Sema6D might use Plexin-A1 as a receptor to repel specific types of axons during development.  相似文献   

17.
Semaphorin3A (Sema3A) is a vertebrate-secreted protein that was initially characterized as a repulsive-guidance cue. Semaphorins have crucial roles in several diseases; therefore, the development of Sema3A inhibitors is of therapeutic interest. Sema3A interacts with glycosaminoglycans (GAGs), presumably through its C-terminal basic region. We used different biophysical techniques (i.e., NMR, surface plasmon resonance, isothermal titration calorimetry, fluorescence, and UV-visible spectroscopy) to characterize the binding of two Sema3A C-terminus-derived basic peptides (FS2 and NFS3) to heparin and chondroitin sulfate A. We found that these peptides bind to both GAGs with affinities in the low-micromolar range. On the other hand, a peptoid named SICHI (semaphorin-induced chemorepulsion inhibitor), which is positively charged at physiological pH, was first identified by our group as being able to block Sema3A chemorepulsion and growth-cone collapse in axons at the extracellular level. To elucidate the direct target for the reported SICHI inhibitory effect in the Sema3A signaling pathway, we looked first to the protein-protein interaction between secreted Sema3A and the Nrp1 receptor. However, our results show that SICHI does not bind directly to the Sema3A sema domain or to Nrp1 extracellular domains. We evaluated a new, to our knowledge, hypothesis, according to which SICHI binds to GAGs, thereby perturbing the Sema3A-GAG interaction. By using the above-mentioned techniques, we observed that SICHI binds to GAGs and competes with Sema3A C-terminus-derived basic peptides for binding to GAGs. These data support the ability of SICHI to block the biologically relevant interaction between Sema3A and GAGs, thus revealing SICHI as a new, to our knowledge, class of inhibitors that target the GAG-protein interaction.  相似文献   

18.
19.
In zebrafish embryos, the axons of the posterior trigeminal (Vp) and facial (VII) motoneurons project stereotypically to a small number of target muscles derived from the first and second branchial arches (BA1, BA2). Use of the Islet1 (Isl1)-GFP transgenic line enabled precise real-time observations of the growth cone behaviour of the Vp and VII motoneurons within BA1 and BA2. Screening for N-ethyl-N-nitrosourea-induced mutants identified seven distinct mutations affecting different steps in the axonal pathfinding of these motoneurons. The class 1 mutations caused severe defasciculation and abnormal pathfinding in both Vp and VII motor axons before they reached their target muscles in BA1. The class 2 mutations caused impaired axonal outgrowth of the Vp motoneurons at the BA1-BA2 boundary. The class 3 mutation caused impaired axonal outgrowth of the Vp motoneurons within the target muscles derived from BA1 and BA2. The class 4 mutation caused retraction of the Vp motor axons in BA1 and abnormal invasion of the VII motor axons in BA1 beyond the BA1-BA2 boundary. Time-lapse observations of the class 1 mutant, vermicelli (vmc), which has a defect in the plexin A3 (plxna3) gene, revealed that Plxna3 acts with its ligand Sema3a1 for fasciculation and correct target selection of the Vp and VII motor axons after separation from the common pathways shared with the sensory axons in BA1 and BA2, and for the proper exit and outgrowth of the axons of the primary motoneurons from the spinal cord.  相似文献   

20.
The olfactory system of the mouse includes several subsystems that project axons from the olfactory epithelium to the olfactory bulb. Among these is a subset of neurons that do not express the canonical pathway of olfactory signal transduction, but express guanylate cyclase-D (GC-D). These GC-D-positive (GC-D+) neurons are not known to express odorant receptors. Axons of GC-D+ neurons project to the necklace glomeruli, which reside between the main and accessory olfactory bulbs. To label the subset of necklace glomeruli that receive axonal input from GC-D+ neurons, we generated two strains of mice with targeted mutations in the GC-D gene (Gucy2d). These mice co-express GC-D with an axonal marker, tau-beta-galactosidase or tauGFP, by virtue of a bicistronic strategy that leaves the coding region of the Gucy2d gene intact. With these strains, the patterns of axonal projections of GC-D+ neurons to necklace glomeruli can be visualized in whole mounts. We show that deficiency of one of the neuropilin 2 ligands of the class III semaphorin family, Sema3f, but not Sema3b, phenocopies the loss of neuropilin 2 (Nrp2) for axonal wiring of GC-D+ neurons. Some glomeruli homogeneously innervated by axons of GC-D+ neurons form ectopically within the glomerular layer, across wide areas of the main olfactory bulb. Similarly, axonal wiring of some vomeronasal sensory neurons is perturbed by a deficiency of Nrp2 or Sema3f, but not Sema3b or Sema3c. Our findings provide genetic evidence for a Nrp2-Sema3f interaction as a determinant of the wiring of axons of GC-D+ neurons into the unusual configuration of necklace glomeruli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号