首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cultures of the mit? mutant strain Mb12 of Saccharomyces cerevisiae (carrying a mutation in the oli2 gene), 70% of the cells are petite mutants. More than 80% of the petites from Mb12 contain a particular mtDNA segment, denoted BB5, that is 880 bp long and carries a single MboI site. Thus, in cultures of Mb12, about 56% of the cells are petites containing the defective BB5 mtDNA genome, and only 30% are mit? cells containing parental Mb12 mtDNA. The BB5 mtDNA segment is also found in petites arising from the wild-type strain J69-1B (from which Mb12 was derived), but in this case mtDNA from only five out of 24 petites produced an 880 bp band after MboI digestion. Since J69-1B cultures carry a petite frequency of about 5%, approximately 1% of cells in J69-1B cultures contain the BB5 mtDNA segment. The difference between Mb12 and J69-1B cultures is reflected in the MboI digestion patterns of the respective mtDNAs. While Mb12 mtDNA contains a grossly superstoicheiometric 880 bp MboI fragment, the corresponding fragment in J69-1B mtDNA cannot be seen on stained gels, but can be readily visualized in Southern blots hybridized to a 32P-labelled DNA probe obtained from the 880 bp MboI fragment. The BB5 mtDNA segment was shown to contain the oril sequence (one of several very similar sequences in wild-type mtDNA thought to act as origins of replication of mtDNA) which confers the genetic property of very high suppressiveness on petites carrying this mtDNA. The efficient replication of BB5 mtDNA may contribute to its abundance in Mb12 cultures. Nevertheless, other factors must operate to influence the abundance of the BB5 mtDNA segment in cultures of different strains, the most important of which is likely to be the rate of excision of this mtDNA segment from the parental mtDNA genome.  相似文献   

2.
Summary Mitochondrial DNA has been isolated from a cytoplasmic petite mutant of Saccharomyces cerevisiae which has retained only about 2% of the mitochondrial wild type genome. The denatured DNA was analyzed by agarose gel electrophoresis and a homogeneous, single band of DNA was found. Petite and wild type mitochondrial DNAs exhibited similar gel electrophoretic mobilities. Using denatured DNA from the E. coli phages T4 and T3 for comparison a molecular weight of 55×106 daltons has been calculated for the double-stranded petite mitochondrial DNA. On the basis of this observation most of the mitochondrial DNA of this petite mutant appeared to consist of a polymer of about 50 repeats to account for a size similar to that of the wild type molecule. Thus a regulatory mechanism might exist which keeps constant the physical size of the mitochondrial DNA molecule in spite of the elimination of large fractions of the wild type genome.Dedicated to Dr. Dr. h. c. Peter Michaelis on the occasion of his 75th birthday  相似文献   

3.
Summary The role of mitochondrial protein synthesis, electron transport, and four specific mitochondrial gene products on sporulation were studied in respiratory deficient mit - mutants. These mutants were isolated in an op1 strain and localized on the mitochondrial genome by petite deletion mapping. All 153 mutations studied could be assigned to the four mitochondrial regions OXI1, OXI2, OXI3 and COB, known to affect cytochrome c oxidase and cytochrome b. The specific loss of one mitochondrially translated polypeptide was found in some mutants of each locus: OXI1—cytochrome c oxidase subunit 2, OXI2 — subunit 3, OXI3 — subunit 1, and COB — cytochrome b.The ability of diploid mit - mutants to sporulate was systematically investigated. About one third of the mutants, representing three loci, were incapable of forming spores. All other cultures produced either respiratory competent mit + tetrads, both mit + and mit - tetrads, or only mit - tetrads. Mutants forming mit - tetrads mapped in all four loci. These results demonstrate that in contrast to petite mutants some mit - mutants have retained the ability to perform meiosis and sporulation.  相似文献   

4.
Hybridization saturation analyses of mitochondrial DNA from 11 petite clones genetically characterized with respect to chloramphenicol and erythromycin resistance markers, have been carried out with 11 individual mitochrondrial transfer RNAs. Mitochondrial tRNA cistrons were lost, retained, or amplified in different petite strains. In some cases hybridization levels corrected for kinetic complexity of the mtDNA3 were two- to threefold greater than that for grande mtDNA indicating selective amplification, or increased number of copies, of the segment of mtDNA containing that tRNA cistron. Hybridization levels corrected for reduced kinetic complexity of petite mtDNAs in many cases were only 1 to 10% of that for grande mtDNA suggesting a low level of intracellular molecular heterogeneity of mtDNA with respect to tRNA cistrons. Some petite clones that retained tRNA genes continued to transcribe mitochondrial tRNAs, since tRNA isolated from these strains could be aminoacylated with Escherichia, coli synthetases and hybridized with mtDNA. Hybridization data allow us to order several of the tRNA cistrons on the mitochondrial genome with respect to the chloramphenicol and erythromycin antibiotic resistance markers.  相似文献   

5.
A method has been devised to test intergenic complementation of mutations in the mitochondrial DNA of Saccharomyces cerevisiae. The test is based on the observation that diploids issued from pairwise crosses of certain mit- mutants with deficiencies in cytochrome oxidase, or coenzyme QH2-cytochrome c reductase, acquire high levels of respiratory activity shortly after zygote formation. Under our experimental conditions neither biochemical complementation, interallelic complementation, nor recombination has been found to contribute to any significant extent toward the respiration measured in the diploids at early times. The test has been used to study the number of complementation groups represented by a large number of mit- mutants. Results of pairwise crosses of mutants in the oxi 1, oxi 2, oxi 3, cob 1, and cob 2 loci indicate that complementation occurs between the oxi and cob loci between different oxi loci but not between the two cob loci. The five loci have, therefore, been assigned to four different complementation groups.  相似文献   

6.
Mitochondrial DNA of an erythromycin-resistant petite mutant of yeast, E734, showed physical maps of inversion, which occurred between two cross-over sites in the fragments Hae A and Hae B. The pair of cross-over sites was inferred to be accommodated within a repeat unit of E734 mtDNA during petite mutation by joining two fragments excised from non-adjacent region of wild type mtDNA.  相似文献   

7.
8.
9.
Ethidium bromide is known to be a powerful mutagen for the induction of cytoplasmically inherited petite mutations in yeast. The effect of ethidium bromide on the degree of suppressiveness of the induced mutants as a function of exposure time is described. The mitochondrial DNA of 20 ethidium bromide-induced petite mutants has been studied to determine its absence or presence and its buoyant density. Ten mutants, in which we were not able to detect any mitochondrial DNA, were neutral petites. The 10 remaining mutants with mitochondrial DNA simultaneously showed a measurable degree of suppressiveness. It was not possible to correlate the buoyant density of the mutant mitochondrial DNA with the degree of suppressiveness.This study was supported in part by USPHS grant GM 10017. G.M. received a Fulbright Travel Grant.  相似文献   

10.
We have isolated a thermosensitive mutant which is transformed into a population of cells devoid of mitochondrial DNA (rho 0 cells) at 35 degrees C and is deficient in mitochondrial (mt) DNA polymerase activity. A single recessive nuclear mutation (mip1) is responsible for rho 0 phenotype and mtDNA polymerase deficiency in vitro. At 25 degrees C (or 30 degrees C) a dominant suppressor mutation (SUP) masks the deficiency in vivo. The meiotic segregants (mip1 sup) which do not harbor the suppressor have a rho 0 phenotype both at 25 and 35 degrees C. They have no mtDNA polymerase activity, in contrast with MIP rho 0 mutants of mitochondrial inheritance which do exhibit mtDNA polymerase activity. In the thermosensitive mutant (mip1 SUP), the replication of mtDNA observed in vivo at 30 degrees C is completely abolished at 35 degrees C. In the meiotic segregants (mip1 sup), no mtDNA replication takes place at 30 and 35 degrees C. The synthesis of nuclear DNA is not affected. DNA polymerases may have replicative and/or repair activity. There is no evidence that mip mutants are deficient in mtDNA repair. In contrast the MIP gene product is strictly required for the replication of mtDNA and for the expression of the mtDNA polymerase activity. This enzyme might be the replicase of mtDNA.  相似文献   

11.
12.
13.
A mutation at a new locus denotedtsr1 which lies very close to theery1 locus and 21S rRNA gene in mitochondrial DNA ofSaccharomyces cerevisiae, confers conditional respiratory deficiency on cells grown at low temperature, namely 18°. Studies on mitochondria isolated from a strain carrying the mutatedtsr1 locus demonstrate that the rate of mitochondrial protein synthesis is cold-sensitive at 18°. The large subunit of the mitochondrial ribosomes isolated from the mutant strain is unstable during extraction and the isolated ribosomes are shown to be defective in catalyzing the poly U-directed synthesis of polyphenylalanine. It is concluded that thetsr1 locus is involved in the determination of the properties of the large subunit of the mitochondrial ribosome.  相似文献   

14.
We have determined the 903 bp nucleotide sequence of the mitochondrial DNA genome of a Saccharomyces cerevisiae petite mutant BB5. This petite, containing the 265 nucleotide ori1 region, is representative of a class of petites arising at exceptionally high frequency within the population of spontaneous petites derived from a particular mit- strain Mb12. The DNA sequences of both the ori1 region and the flanking intergenic regions have been compared to those of the corresponding regions of mtDNA in a previously reported petite strain, a1/1R/1 of Bernardi's laboratory, that has a similar (880 bp) repeat unit. The BB5 petite genome carries a canonical ori1 sequence that is identical in both petite mtDNAs, but the flanking intergenic sequences show significant differences between the two petite strains. The divergence is considered to arise from differences in the sequences flanking ori1 in the respective parent strains.  相似文献   

15.
Mitochondrial DNA isolated from a series of nine petite yeast strains and from the parent grande strain was characterized by electron microscopic and renaturation kinetic analysis. The mtDNA2 from all strains contained a variety of branched molecules which may be intermediates of replication or recombination. Although no circles were observed in the grande mtDNA, all the petites contained circular mtDNA molecules. The size distribution of the circles conformed to an oligomeric series that was characteristic for each strain. In seven petites, the length series could be related to a single circle monomer size, ranging from 0.13 μm to 5.5 μm; and in two petites to two or more circular monomer lengths. In contrast to circular mtDNA, linear molecules showed no unique size distribution. Circle monomer lengths were linearly related to the kinetic complexity (κ2 or C0t12) of sheared total mtDNA in the seven petite strains that contained a predominant single series of circle lengths. Thus in each of these petite strains the circle monomer length defined the same DNA sequence present in the linear DNA molecules of non-unique length.  相似文献   

16.
Mitochondrial DNA (mtDNA) from petite strain K45 ofSaccharomyces cerevisiae contains about 7% circular DNA molecules which comprise a simple oligomeric series based on a monomeric size of 1.7 kilobase pairs. Electrophoresis of K45 mtDNA on a polyacrylamide-agarose slab gel fractionates the mtDNA into a major band (containing linear DNA) and several faster running minor bands each containing particular size class of circular DNA molecules. From study of mtDNA from K45 and two other simple petites it was found that the mobility of circles is inversely proportional to the logarithm of the circle size. Polyacrylamide gel electrophoresis thus permits the separation of circular mtDNA from the linear mtDNA of simple petites, and physically resolves circles of different size from one another.  相似文献   

17.
18.
A linear DNA plasmid, designated pLLE1, has been isolated from a mitochondrial fraction of a strain of Lentinus edodes. pLLE1(11.0 kbp) was sensitive to the 3'----5'-acting exonuclease III and resistant to the 5'----3'-acting lambda exonuclease. It showed no homology with mitochondrial and nuclear genomic DNAs of plasmidless strain as well as the pLLE1-harboring host strain of L. edodes. The 1434-bp fragment (sequences) capable of autonomous replication in the yeast Saccharomyces cerevisiae (ARSs) was cloned from pLLE1 DNA with YIp32 (pBR322 containing yeast LEU2 DNA), which displayed a high ARS activity. The cloned 1434-bp fragment was shown to lie near to the end of pLLE1 DNA (nucleotides about 800-2200) and contained three consecutive ARS consensus sequences (A/T)TTTAT(A/G)TTT(A/T) of S. cerevisiae and dispersive eight ARS consensus-like sequences. The subcloned 366-bp fragment containing the three ARSs retained original ARS activity of the 1434-bp fragment.  相似文献   

19.
20.
E Boy-Marcotte  M Jacquet 《Gene》1982,20(3):433-439
Dictyostelium discoideum DNA fragments have been inserted into the chimeric bacterium-yeast plasmid YEp13. Recombinant plasmids were used to transform yeast using a strain of Saccharomyces cerevisiae deficient in OMP decarboxylase activity. Several clones were selected for growth in uracil-free medium. One clone was further analysed and contains a plasmid with a segment of D. discoideum DNA which complements a yeast ura3 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号