首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although fields such as industrial ecology have advanced our understanding of how cleaner technologies, recycling, and lifestyle changes can reduce the impacts of production and consumption on people and planet, environmental deterioration and social injustices stubbornly persist. New strategies are needed to achieve change in an era of increasing urgency. This paper proposes that academics study the supply chains of individual corporations and link them to environmental and social impacts in geographically specific areas. Nongovernmental organizations (NGOs) have used this approach successfully, issuing reports about corporate activity related to deforestation, sweatshops, and other issues of social concern. But academics, by and large, have studied generic products, industries, and sectors. To verify this, after reviewing approximately 11,000 studies on supply chains, we identified just 27 academic papers that focused on individual corporations. These were primarily by NGOs and social scientists, with no studies by industrial ecologists meeting our review criteria. To uncover corporate supply chains, researchers used two distinct methodological approaches: in situ (interviews, surveys, and surveillance) and ex situ (trade data, document analysis, and maps). In this paper, we explain why and how academics should study the supply chains of individual corporations. This is done by combining approaches from industrial ecology, with those from geography, sociology, and other social sciences to develop a political‐industrial ecology of supply chains. This both physically links actual product flows with their environmental impacts, and explores how they affect justice, equity, and welfare. The work we propose offers clear collaborative linkages with NGOs, industry, and the media.  相似文献   

2.
Incorporating the beneficial use of industrial by‐products into the industrial ecology of an urban region as a substitute or supplement for natural aggregate can potentially reduce life cycle impacts. This article specifically looks at the utilization of industrial by‐products (IBPs) (coal ash, foundry sand, and foundry slag) as aggregate for roadway sub‐base construction for the Pittsburgh, Pennsylvania, urban region. The scenarios compare the use of virgin aggregate with the use of a combination of both virgin and IBP aggregate, where the aggregate material is selected based on proximity to the construction site and allows for minimization of transportation impacts. The results indicate that the use of IBPs to supplement virgin aggregate on a regional level has the potential of reducing impacts related to energy use, global warming potential, and emissions of nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), PM10 (particulate matter—10 microns), mercury (Hg), and lead (Pb). Regional management of industrial by‐products would allow for the incorporation of these materials into the industrial ecology of a region and reduce impacts from the disposal of the IBP materials and the extraction of virgin materials and minimize the impacts from transportation. The combination of reduced economic and environmental costs provides a strong argument for state transportation agencies to develop symbiotic relationships with large IBP producers in their regions to minimize impacts associated with roadway construction and maintenance—with the additional benefit of improved management of these materials.  相似文献   

3.
Although environmental education and education for sustainable development have become well‐established areas of scholarship and practice, there has not been a similar development focused on “industrial ecology education.” A review of the historical context and guiding philosophies for each of these areas finds many similarities, as well as key differences. Environmental education traces its modern roots to the idealism of the 1960s and 1970s. It has focused mostly on improving environmental conditions. Education for sustainable development arose along with international concerns about social justice. It has emphasized general education as well as education about sustainability as necessary to ensure human prosperity. Industrial ecology, in its contemporary form, evolved as an applied approach to address environmental concerns and to meet sustainability goals. It has developed into a diverse, multifaceted approach to address the complexity inherent in industrial society. Education focused on industrial ecology remains decentralized, with core principles and tools being integrated into existing disciplinary programs as well as development of industrial‐ecology–specific curricula. These efforts have not coalesced into a formalized, industrial ecology education. Rather than reflecting a shortcoming, this potentially offers a more robust method for applying industrial ecology principles and tools widely.  相似文献   

4.
Healthcare is a critical service sector with a sizable environmental footprint from both direct activities and the indirect emissions of related products and infrastructure. As in all other sectors, the “inside‐out” environmental impacts of healthcare (e.g., from greenhouse gas emissions, smog‐forming emissions, and acidifying emissions) are harmful to public health. The environmental footprint of healthcare is subject to upward pressure from several factors, including the expansion of healthcare services in developing economies, global population growth, and aging demographics. These factors are compounded by the deployment of increasingly sophisticated medical procedures, equipment, and technologies that are energy‐ and resource‐intensive. From an “outside‐in” perspective, on the other hand, healthcare systems are increasingly susceptible to the effects of climate change, limited resource access, and other external influences. We conducted a comprehensive scoping review of the existing literature on environmental issues and other sustainability aspects in healthcare, based on a representative sample from over 1,700 articles published between 1987 and 2017. To guide our review of this fragmented literature, and to build a conceptual foundation for future research, we developed an industrial ecology framework for healthcare sustainability. Our framework conceptualizes the healthcare sector as comprising “foreground systems” of healthcare service delivery that are dependent on “background product systems.” By mapping the existing literature onto our framework, we highlight largely untapped opportunities for the industrial ecology community to use “top‐down” and “bottom‐up” approaches to build an evidence base for healthcare sustainability.  相似文献   

5.
Industrial ecology is an emerging concept for the promotion of environmentally sound manufacturing and consumption. It aims to balance industrial development with the sustainable use of natural resources including energy, materials, and the capacity of the environment to assimilate wastes and render valuable services. The widespread adoption of industrial ecology can be furthered by a critical review of current preventive activities in industry. This article reviews the role that current preventive environmental activities-known as cleaner production-could play in the implementation of industrial ecology. The article focuses on whether cleaner production in its present form is sufficient, in terms of breadth of both industrial activities (sources) and environmental concerns (impacts addressed), for achieving industrial ecology's core objectives. It is concluded that current cleaner production practices are not sufficient for achieving the ultimate goals of industrial ecology. Nevertheless, cleaner production practices and methodologies may evolve into useful instruments for the implementation of industrial ecology.  相似文献   

6.
Towards an Integrated Regional Materials Flow Accounting Model   总被引:1,自引:0,他引:1  
A key challenge in attaining regional sustainability is to reduce both the direct and the indirect environmental impacts associated with economic and household activity in the region. Knowing what these flows are and how they change over time is a prerequisite for this task.
This article describes the early development of an integrated regional materials flow accounting framework. The framework is based on a hybrid (material and economic) multiregional input-output model. Using readily available economic and materials data sets together with transport and logistics data, the framework attempts to provide estimates of household resource flows for any U.K. region at quite detailed levels of product and material disaggregation. It is also capable of disaggregating these flows according to specific socioeconomic criteria such as income level or occupation of the head of household. Allied to appropriate energy and life-cycle assessment data sets, the model could, in addition, be used to map both direct and indirect environmental impacts associated with these flows.
The benefits of such an approach are likely to be a considerable reduction of uncertainties in (1) our knowledge of the household metabolism, and hence our predictions of regional household waste generation; (2) our assessment of the impacts of contemplated changes in industrial process siting, and thereby on other aspects of local and regional planning; and (3) our understanding of the impacts of changes in the pattern of demand for different materials and products. It is concluded that the use of such an integrated assessment tool has much to contribute to the debate on regional sustainability.  相似文献   

7.
Mensch and Mesh     
This article discusses several relationships between technologies, industries, and socioeconomic institutions that are central to the emerging field of industrial ecology but as of yet have found little recognition. Special attention is given to the history of changes in the complexity of technologies and socioeconomic institutions, methods for dealing with this complexity conceptually and in the context of decision making, and interrelationships between technology and policy choice at various levels of system organization. On the basis of that discussion, new roles for systems thinking and modeling, systems engineering, and technology and industrial policy are identified to promote the development of industrial ecosystems that minimize their environmental impacts.  相似文献   

8.
Conclusion  In conclusion, LCA that is conducted and used appropriately is an indispensable tool to assist decision-makers in making an informed decision about the environmental impacts of their activities, products or services. A global effort towards LCA use should be encouraged and countries in the Asian/Pacific Regions should not be left out. LCA-related activities reported in the symposium were described  相似文献   

9.
Purpose

Changes in the production of Australian cotton lint are expected to have a direct environmental impact, as well as indirect impacts related to co-product substitution and induced changes in crop production. The environmental consequences of a 50% expansion or contraction in production were compared to Australian cotton production’s current environmental footprint. Both were then assessed to investigate whether current impacts are suitable for predicting the environmental impact of a change in demand for cotton lint.

Methods

A consequential life cycle assessment (LCA) model of Australian cotton lint production (cradle-to-gin gate) was developed using plausible scenarios regarding domestic regions and technologies affected by changes in supply, with both expansion (additional cotton) and contraction (less cotton) being modelled. Modelling accounted for direct impacts from cotton production and indirect impacts associated with changes to cotton production, including co-product substitution and changes to related crops at regional and global scales. Impact categories assessed included climate change, fossil energy demand, freshwater consumption, water stress, marine and freshwater eutrophication, land occupation and land-use change.

Results and discussion

For both the expansion and contraction scenarios, the changes to climate change impacts (including iLUC) and water impacts were less than would be assumed from current production as determined using attributional LCA. However, the opposite was true for all other impact categories, indicating trade-offs across the impact categories. Climate change impacts under both scenarios were relatively minor because these were largely offset by iLUC. Similarly, under the contraction scenario, water impacts were dominated by indirect impacts associated with regional crops. A sensitivity analysis showed that the results were sufficiently robust to indicate the quantum of changes that could be expected.

Conclusions

A complex array of changes in technologies, production regions and related crops were required to model the environmental impacts of a gross change in cotton production. Australian cotton lint production provides an example of legislation constraining the direct water impacts of production, leading to a contrast between impacts estimated by attributional and consequential LCA. This model demonstrated that indirect products and processes are important contributors to the environmental impacts of Australian cotton lint.

  相似文献   

10.
The food and agriculture sectors contribute significantly to climate change, but are also particularly vulnerable to its effects. Industrial ecology has robustly addressed these sectors’ contributions to climate change, but not their vulnerability to climate change. Climate change vulnerability must be addressed through development of climate change adaptation and resiliency strategies. However, there is a fundamental tension between the primary objectives of industrial ecology (efficiency, cyclic flows, and pollution prevention) and what is needed for climate change adaptation and resiliency. We develop here two potential ways through which the field can overcome (or work within) this tension and combine the tools and methods of industrial ecology with the science and process of climate change adaptation. The first layers industrial ecology tools on top of climate change adaptation strategies, allowing one to, for example, compare the environmental impacts of different adaptation strategies. The other embeds climate change adaptation and resiliency within industrial ecology tools, for example, by redefining the functional unit in life cycle assessment (LCA) to include functions of resiliency. In both, industrial ecology plays a somewhat narrow role, informing climate change adaptation and resilience decision‐making by providing quantitative indicators of environmental performance. This role for industrial ecology is important given the significant contributions and potential for mitigation of greenhouse gas emissions from food and agriculture. However, it suggests that industrial ecology's role in climate adaptation will be as an evaluator of adaptation strategies, rather than an originator.  相似文献   

11.
The goal of this research work was to assist consumers in considering environmental aspects of food consumption. A simplified, modular LCA approach has been used to evaluate the impacts from the consumers’ point of view. Comparative LCA’s have been calculated for five single aspects of decisions: type of agricultural practice, origin, packaging material, type of preservation, and consumption. The inventory for one module includes the environmental impacts related to one particular product characteristic. The modular LCA allows one to investigate the trade-offs among different decision parameters. It could be shown that most of the decision parameters might have an influence on the overall impact of a vegetable product. Greenhouse production and vegetables transported by air cause the highest surplus environmental impact. For meat products, the agricultural production determines the overall environmental impact. The total impact for vegetable or meat purchases may vary by a factor of eight or two-and-a-half. Different suggestions for consumers have been ranked according to the variation of average impacts, due to a marginal change of behaviour. Avoiding air-transported food products leads to the highest decrease of environmental impacts.  相似文献   

12.
In many cases, policy makers and laymen perceive harmful emissions from chemical plants as the most important source of environmental impacts in chemical production. As a result, regulations and environmental efforts have tended to focus on this area. Concerns about energy use and greenhouse gas emissions, however, are increasing in all industrial sectors. Using a life cycle assessment (LCA) approach, we analyzed the full environmental impacts of producing 99 chemical products in Western Europe from cradle to factory gate. We applied several life cycle impact assessment (LCIA) methods to cover various impact areas. Our analysis shows that for both organic and inorganic chemical production in industrial countries, energy‐related impacts often represent more than half and sometimes up to 80% of the total impacts, according to a range of LCIA methods. Resource use for material feedstock is also important, whereas direct emissions from chemical plants may make up only 5% to 10% of the total environmental impacts. Additionally, the energy‐related impacts of organic chemical production increase with the complexity of the chemicals. The results of this study offer important information for policy makers and sustainability experts in the chemical industry striving to reduce environmental impacts. We identify more sustainable energy production and use as an important option for improvements in the environmental profile of chemical production in industrial countries, especially for the production of advanced organic and fine chemicals.  相似文献   

13.
By‐product synergy (BPS) is an industrial ecology practice that involves utilization of industrial by‐products as feedstocks for other industrial processes. A novel decision support tool is developed to analyze BPS networks that involve material processing and transport among regional clusters of companies. Mathematical programming techniques are used to determine the optimal network design and the material flows that minimize total cost or environmental impacts. This methodology is incorporated into a graphical software package called Eco‐Flow?. The tool has been applied to model and analyze available synergies in an existing BPS network centered in Kansas City, Missouri. A base case, which assumes no synergies, is compared with the optimal BPS solution found by Eco‐Flow?. The results for Kansas City suggest that when companies in the network cooperate to optimize the system profitability, up to $15 million per year of savings are possible. The findings also indicate that the BPS approach would result in 29% reduction in total cost, 25.8% reduction in average company cost, 30% reduction in carbon dioxide (CO2) emissions, and 37% reduction in waste to landfill. The modeling approach is being extended to better represent the dynamics of industrial and ecological processes.  相似文献   

14.
范育鹏  乔琦  方琳 《生态学报》2017,37(13):4599-4609
产业生态系统研究已成为当今学术界、产业界的研究重点和热点,对于充分利用资源、减轻环境压力、改造升级传统产业都具有不可估量的科学指导意义。目前,国内外对产业生态系统的研究定性较多,包括概念,特点,建设原则和经营理念的描述,而定量较少。然而,产业生态系统在发展当中也出现了大量的实际问题,急需加强对其定量研究,从而发现、提高和改进产业生态系统的结构及效率,增强可持续性。从近些年生态学的先进理论成果入手探讨了定量研究产业生态系统的一些方法——能值、(火用)、生态足迹和生态信息的方法。对这些方法的理论基础、发展历程、实践应用和适用特点依次进行了详细的梳理和归纳,并基于3个基本原则(生态维度和经济维度的整合,系统长期的恢复力,系统的广度和强度性质)对各个方法进行了综合比较分析,旨在为产业生态系统研究提供方向和理论指导。  相似文献   

15.
Industrial ecology (IE) has historically focused on manufacturing but could be applied more broadly, particularly to sectors of the economy not typically considered "dirty." The guest-service sector, for example, has a significant ecological footprint, often in environmentally sensitive areas, and would benefit from an IE perspective. Colorado's Aspen Skiing Company, which hosts 1.3 million skiers annually on 5, 000 acres of skiable terrain, is integrating concepts of energy efficiency, feedback, life-cycle costing, nutrient cycling, renewable energy, ecosystem diversity, local sourcing, and human capital into operations at four ski areas and two hotels. An IE perspective offers the guest service sector a holistic view of its environmental impacts, a big-picture view that is missing from an industry where environmentalism has historically meant "recycling" or end-of-pipe pollution control. Many industrial ecology principles are directly applicable to resorts, but implementers will encounter a host of obstacles cultural, institutional, and economic that express themselves in unique ways in the guest service sector. Written using firsthand experiences from Aspen's ski slopes, restaurants, and a five-star hotel, this article explores what happens when the principles of industrial ecology are applied to the guest service sector, particularly what goes right, and what goes wrong.  相似文献   

16.
Although industrial ecology represents a captivating metaphor and rich repertoire of analytical tools, its impact on environmental policy has been marginal at best. This article examines the insights provided by the studies of three common materials in the US. economy-lead, arsenic, and silver-and the abilrty of such studies to illuminate some larger and looming challenges for future environmental policy. Three specific challenges are explored: the flow of materials across national borders, the increasing embodiment of emissions in products, and the dangers of unchallenged assumptions about the drivers of material flows. The article argues that industrial ecology can inform public policy but that it is time for the practitioners of industrial ecology, an applied science, to apply it in the often messy world of environmental policymaking.  相似文献   

17.
刘晶茹  刘瑞权  姚亮 《生态学报》2012,32(20):6553-6557
生产和消费是产生诸多环境问题的根本原因,而可持续生产和消费则是实现可持续发展的根本途径。基于产业生态学视角,界定了可持续消费的定义及内涵,认为可持续消费首先须符合代内公平、代际公平和资源能源永续合理利用等可持续理念;其次辨识了可持续消费研究依次经历关注消费者行为直接环境影响、关注产品和服务生命周期环境影响到关注消费者责任3个阶段;最后结合我国城市化、工业化背景,提出我国可持续消费研究应该以城市居民为重点、加强生命周期数据库建设和内注重可持续生产等建议。  相似文献   

18.
As organizations practice environmental design, some discover green design positively impacts business performance. This article demonstrates how an organization can employ existing design methods and tools with the Kano technique to craft an environmental product design strategy that enhances its business strategy. These tools expand the toolbox of the industrial ecologist and enable the link between green design and business improvement. The Kano technique was developed in the 1980s to facilitate design of innovative products. We also introduce terminology and concepts such as “voices of the environment,”“environmental knowledge management,”“environmental profile,” and “environmental product attribute” in order to bridge the gap between industrial ecology and business concerns. To demonstrate how an organization can find the synergy between business value and environmental value, this article describes three activities and their corresponding tools and exhibits their use with industry examples. First, we present techniques by which designers can identify and prioritize customers and stakeholders who voice both environmental and business concerns. Second, we describe how voice‐of‐the‐customer translation techniques can be used to efficiently collect and translate data from these customers and stakeholders into critical environmental product and service attributes. Third, we discuss how the Kano technique can be used to connect green design to business strategy by making visible the variety of stakeholder and customer perceptions of these critical environmental attributes. Examples then demonstrate how those perceptions suggest appropriate approaches for integrating the critical environmental attributes into product and business strategy. Finally, we provide examples based on work done with General Electric Medical Systems (GEMS) to illustrate the design of products that improve environmental performance while adding greater perceived value for numerous customers along material‐flow value chains.  相似文献   

19.
Purpose

Cotton yarns spun from natural fibers are widely used in the apparel industry. Most of waste cotton goods are now disposed by incineration or landfill, which brings resource and environmental challenges to the society. Using the waste cotton to spin yarns is an alternative way to forward a more sustainable future. In this research, two scenarios for the environmental impacts of yarns spun from corresponding fibers are investigated, including recycled cotton fibers and virgin cotton fibers.

Methods

The life cycle assessment (LCA) has been conducted according to the collected data from on-site investigation of typical production factories. The life cycle for the recycled cotton yarn production is divided into five stages, i.e., raw material acquisition, transportation, breaking, mixing, and spinning. The life cycle of virgin cotton yarn production is been divided into four stages, i.e., raw material acquisition, transportation, mixing, and spinning. The functional unit is 1000 kg produced yarns which are used for weaving into the fabrics. Notable impacts on climate change, fossil depletion, water depletion, and human toxicity were observed.

Results

The life cycle impact assessment (LCIA) results show that environmental impacts of recycled cotton yarns are far less than those of virgin cotton yarns, except for climate change and water depletion. The reason is that the land occupation and irrigation water have great impact on environmental impacts of cotton cultivation. In spinning, the electricity is the key factor whose environmental impacts account for the most in the virgin cotton yarn scenario, while the electricity and water consumptions are the key factors for the recycled cotton yarn scenario in the life cycle of yarn production. The sensitivity analysis indicates that improving energy efficiency can significantly reduce environmental burdens for both the two scenarios. The uncertainty distribution of water depletion, human toxicity, fossil depletion, and climate change of the two scenarios were determined with a 90% confidence interval.

Conclusions

The LCIA results reveal recycled cotton yarn is a viable alternative to relieve resource and environmental pressure. About 0.5 ha of agricultural land can be saved, 6600 kg CO2 eq can be reduced, and 2783 m3 irrigation water can be saved by using 1000 kg of the recycled cotton yarns. It can be concluded that the recycled cotton fibers can be served as a substitute for virgin cotton fibers to reduce agricultural land and avoid environmental impacts generated from the cotton planting.

  相似文献   

20.
The food industry in Australia (agriculture and manufacturing) plays a fundamental role in contributing to socioeconomic sectors nationally. However, alongside the benefits, the industry also produces environmental burdens associated with the production of food. Sectorally, agriculture is the largest consumer of water. Additionally, land degradation, greenhouse gas emissions, energy consumption, and waste generation are considered the main environmental impacts caused by the industry. The research project aims to evaluate the eco‐efficiency performance of various subsectors in the Australian agri‐food systems through the use of input‐output–oriented approaches of data envelopment analysis and material flow analysis. This helps in establishing environmental and economic indicators for the industry. The results have shown inefficiencies during the life cycle of food production in Australia. Following the principles of industrial ecology, the study recommends the implementation of sustainable processes to increase efficiency, diminish undesirable outputs, and decrease the use of nonrenewable inputs within the production cycle. Broadly, the research outcomes are useful to inform decision makers about the advantages of moving from a traditional linear system to a circular production system, where a sustainable and efficient circular economy could be created in the Australian food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号