首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because the rod structure of the flagellar basal body crosses the inner membrane, the periplasmic space, and the outer membrane, its formation must involve hydrolysis of the peptidoglycan layer. So far, more than 10 genes have been shown to be required for rod formation in Salmonella typhimurium. Some of them encode the component proteins of the rod structure, and most of the remaining genes are believed to encode proteins involved in the export process of the component proteins. Although FlgJ has also been known to be involved in rod formation, its exact role has not been understood. Recently, it was suggested that the C-terminal half of the FlgJ protein has homology to the active center of some muramidase enzymes from gram-positive bacteria. In this study, we showed that the purified FlgJ protein from S. typhimurium has a peptidoglycan-hydrolyzing activity and that this activity is localized in its C-terminal half. Through oligonucleotide-directed mutagenesis, we constructed flgJ mutants with amino acid substitutions in the putative active center of the muramidase. The resulting mutants produced FlgJ proteins with reduced enzymatic activity and showed poor motility. These results indicate that the muramidase activity of FlgJ is essential for flagellar formation. Immunoblotting analysis with the fractionated cell extracts revealed that FlgJ is exported to the periplasmic space, where the peptidoglycan layer is localized. On the basis of these results, we conclude that FlgJ is the flagellum-specific muramidase which hydrolyzes the peptidoglycan layer to assemble the rod structure in the periplasmic space.  相似文献   

2.
The C-terminal half of the Salmonella flagellar protein FlgJ has peptidoglycan hydrolyzing activity and it has been suggested that it is a flagellum-specific muramidase which locally digests the peptidoglycan layer to permit assembly of the rod structure to proceed through the periplasmic space. It was also suggested that FlgJ might be involved in rod formation itself, although there was no direct evidence for this. We purified basal body structures from SJW1437(flgJ) transformed with plasmids encoding various mutant FlgJ proteins and found that these basal bodies possessed the periplasmic P ring but lacked the outer membrane L ring; they also lacked a hook at their distal end. All of these mutant FlgJ proteins had an altered or missing C-terminal domain but had at least the first 151 amino acid residues of the N-terminal domain. Immunoblotting analysis of fractionated cell extracts revealed that a rod/hook export class protein, FlgD, was exported to the periplasm but not to the culture supernatant in these mutants. FlgJ was shown to physically interact with several proteins, and especially FliE and FlgB, which are believed to reside at the cell-proximal end of the rod. On the basis of these results, we conclude that the N-terminal 151 amino acid residues of FlgJ are directly involved in rod formation and that the muramidase activity of FlgJ, though needed for formation of the L ring and subsequent events such as hook formation, is not essential for rod or P ring formation. In contrast, muramidase activity alone does not support rod assembly.  相似文献   

3.
The flagellum is a major virulence factor of motile pathogenic bacteria. This structure requires more than 50 proteins for its biogenesis and function, one of which is FlgJ. Homologs of FlgJ produced by the β- and γ-proteobacteria, such as Salmonella enterica, Vibrio spp., and both Sphingomonas sp. and Pseudomonas spp. are bifunctional, possessing an N-terminal domain responsible for proper rod assembly and a C-terminal domain possessing peptidoglycan lytic activity. Despite the amount of research conducted on FlgJ from these and other bacteria over the past 15 years, no biochemical analysis had been conducted on any FlgJ and consequently confusion exists as to whether the enzyme is a peptidoglycan hydrolase or a lytic transglycosylase. In this study, we present the development of a novel assay for glycoside lytic enzymes and its use to provide the first enzymatic characterization of the lytic domain of FlgJ from S. enterica as the model enzyme. Surprisingly, FlgJ functions as neither a muramidase nor a lytic transglycosylases but rather as a β-N-acetylglucosaminidase. As such, FlgJ represents the first autolysin with this activity to be characterized from a Gram-negative bacterium. At its optimal pH of 4.0, the Michaelis-Menten parameters of Km and kcat for FlgJ from S. enterica were determined to be 0.64 ± 0.18 mg ml−1 and 0.13 ± 0.016 s−1, respectively, using purified PG as substrate. Its catalytic residues were identified as Glu184 and Glu223.  相似文献   

4.
Macromolecular structures such as the bacterial flagellum in Gram-negative bacteria must traverse the cell wall. Lytic transglycosylases are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. We have previously shown that in Rhodobacter sphaeroides SltF, the flagellar muramidase, and FlgJ, a flagellar scaffold protein, are separate entities that interact in the periplasm. In this study we show that the export of SltF to the periplasm is dependent on the SecA pathway. A deletion analysis of the C-terminal portion of SltF shows that this region is required for SltF-SltF interaction. These C terminus-truncated mutants lose the capacity to interact with themselves and also bind FlgJ with higher affinity than does the wild-type protein. We propose that this region modulates the interaction with the scaffold protein FlgJ during the assembly process.  相似文献   

5.
Bacteriophage endolysins are crucial for progeny release at the end of the lytic cycle. Mycobacteriophage's genomes carry a lysin A essential gene, whose product cleaves the peptidoglycan (PG) layer and a lysin B, coding for an esterase, that cleaves the linkage between the mycolic acids and the arabinogalactan-PG complex. Lysin A mycobacteriophage proteins are highly modular and in gp29 (LysA) of phage TM4 three distinctive domains were identified. By bioinformatics analysis the central module was previously found to be similar to an amidase-2 domain family with an N-acetylmuramoyl -L-alanine amidase activity. We demonstrated experimentally that purified LysA is able to lyse a suspension of Micrococcus lysodeikticus and can promote cell lysis when expressed in E. coli and Mycobacterium smegmatis. After incubation of LysA with MDP (Muramyl dipeptide, N-acetyl-muramyl-L-alanyl-D-isoglutamine) we detected the presence of N-acetylmuramic acid (NAcMur) and L-Ala- D- isoGlutamine (L-Ala-D-isoGln) corroborating the proposed muramidase activity of this enzyme. This protein was stabilized at acidic pH in the presence of Zn consistent with the increase of the enzymatic activity under these conditions. By homology modeling, we predicted that the Zn ion is coordinated by His 226, His 335, and Asp 347 and we also identified the amino acid Glu 290 as the catalytic residue. LysA activity was completely abolished in derived mutants on these key residues, suggesting that the PG hydrolysis solely relies on the central domain of the protein.  相似文献   

6.
7.
CwlQ (previous YjbJ) is one of the putative cell wall hydrolases in Bacillus subtilis. Its domain has an amino acid sequence similar to the soluble-lytic transglycosylase (SLT) of Escherichia coli Slt70 and also goose lysozyme (muramidase). To characterize the enzyme, the domain of CwlQ was cloned and expressed in E. coli. The purified CwlQ protein exhibited cell wall hydrolytic activity. Surprisingly, RP-HPLC, mass spectrometry (MS), and MS/MS analyses showed that CwlQ produces two products, 1,6-anhydro-N-acetylmuramic acid and N-acetylmuramic acid, thus indicating that CwlQ is a bifunctional enzyme. The site-directed mutagenesis revealed that glutamic acid 85 (Glu-85) is an amino acid residue essential to both activities.  相似文献   

8.
Radial spokes of the eukaryotic flagellum extend from the A tubule of each outer doublet microtubule toward the central pair microtubules. In the paralyzed flagella mutant of Chlamydomonas pf14, a mutation in the gene for one of 17 polypeptides that comprise the radial spokes results in flagella that lack all 17 spoke components. The defective gene product, radial spoke protein 3 (RSP3), is, therefore, pivotal to the assembly of the entire spoke and may attach the spoke to the axoneme. We have synthesized RSP3 in vitro and assayed its binding to axonemes from pf14 cells to determine if RSP3 can attach to spokeless axonemes. In vitro, RSP3 binds to pf14 axonemes, but not to wild-type axonemes or microtubules polymerized from purified chick brain tubulin. The sole axoneme binding domain of RSP3 is located within amino acids 1-85 of the 516 amino acid protein; deletion of these amino acids abolishes binding by RSP3. Fusion of amino acids 1-85 or 42-85 to an unrelated protein confers complete or partial binding activity, respectively, to the fusion protein. Transformation of pf14 cells with mutagenized RSP3 genes indicates that amino acids 18-87 of RSP3 are important to its function, but that the carboxy-terminal 140 amino acids can be deleted with little effect on radial spoke assembly or flagellar motility.  相似文献   

9.
Genetic and morphological studies have revealed that the radial spokes regulate ciliary and flagellar bending. Functional and biochemical analysis and the discovery of calmodulin in the radial spokes suggest that the regulatory mechanism involves control of axonemal protein phosphorylation and calcium binding to spoke proteins. To identify potential regulatory proteins in the radial spoke, in-gel kinase assays were performed on isolated axonemes and radial spoke fractions. The results indicated that radial spoke protein 2 (RSP2) can bind ATP and transfer phosphate in vitro. RSP2 was cloned and mapped to the PF24 locus, a gene required for motility. Sequencing revealed that pf24 contains a point mutation converting the first ATG to ATA, resulting in only trace amounts of RSP2 and confirming the RSP2 mapping. Surprisingly, the sequence does not include signature domains for conventional kinases, indicating that RSP2 may not perform as a protein kinase in vivo. However, the predicted RSP2 protein sequence contains Ca2+-dependent calmodulin binding motifs and a GAF domain, a domain found in diverse signaling proteins for binding small ligands including cyclic nucleotides. As predicted from the sequence, recombinant RSP2 binds calmodulin in a calcium-dependent manner. We postulate that RSP2 is a regulatory subunit of the radial spoke involved in localization of calmodulin for control of motility.  相似文献   

10.
11.
Most flagellar proteins of Salmonella are exported to their assembly destination via a specialized apparatus. This apparatus is a member of the type III superfamily, which is widely used for secretion of virulence factors by pathogenic bacteria. Extensive studies have been carried out on the export of several of the flagellar proteins, most notably the hook protein (FlgE), the hook-capping protein (FlgD), and the filament protein flagellin (FliC). This has led to the concept of two export specificity classes, the rod/hook type and the filament type. However, little direct experimental evidence has been available on the export properties of the basal-body rod proteins (FlgB, FlgC, FlgF, and FlgG), the putative MS ring-rod junction protein (FliE), or the muramidase and putative rod-capping protein (FlgJ). In this study, we have measured the amounts of these proteins exported before and after hook completion. Their amounts in the culture supernatant from a flgE mutant (which is still at the hook-type specificity stage) were much higher than those from a flgK mutant (which has advanced to the filament-type specificity stage), placing them in the same class as the hook-type proteins. Overproduction of FliE, FlgB, FlgC, FlgF, FlgG, or FlgJ caused inhibition of the motility of wild-type cells and inhibition of the export of the hook-capping protein FlgD. We also examined the question of whether export and translation are linked and found that all substrates tested could be exported after protein synthesis had been blocked by spectinomycin or chloramphenicol. We conclude that the amino acid sequence of these proteins suffices to mediate their recognition and export.  相似文献   

12.
13.
Bacterial flagellar rod structure is built across the peptidoglycan (PG) layer. A Salmonella enterica flagellar protein FlgJ is believed to consist of two functional domains, the N-terminal half acting as a scaffold or cap essential for rod assembly and the C-terminal half acting as a PG hydrolase (PGase) that makes a hole in the PG layer to facilitate rod penetration. In this study, molecular data analyses were conducted on FlgJ data sets sampled from a variety of bacterial species, and three types of FlgJ homologs were identified: (i) "canonical dual-domain" type found in beta- and gamma-proteobacteria that has a domain for one of the PGases, acetylmuramidase (Acm), at the C terminus, (ii) "non-canonical dual-domain" type found in the genus Desulfovibrio (delta-proteobacteria) that bears a domain for another PGase, M23/M37-family peptidase (Pep), at the C terminus and (iii) "single-domain" type found in phylogenetically diverged lineages that lacks the Acm or Pep domain. FlgJ phylogeny, together with the domain architecture, suggested that the single-domain type was the original form of FlgJ and the canonical dual-domain type had evolved from the single-domain type by fusion of the Acm domain to its C terminus in the common ancestor of beta- and gamma-proteobacteria. The non-canonical dual-domain type may have been formed by fusion of the Pep domain to the single-domain type in the ancestor of Desulfovibrio. In some lineages of gamma-proteobacteria, the Acm domain appeared to be lost secondarily from the dual-domain type FlgJ to yield again a single-domain type one. To rationalize the underlying mechanism that gave rise to the two different types of dual-domain FlgJ homologs, we propose a model assuming the lineage-specific co-option of flagellum-specific PGase from diverged housekeeping PGases in bacteria.  相似文献   

14.
《FEMS microbiology letters》1998,165(1):193-200
Deletion of a region of DNA 5′ to a previously characterised malQ gene of Clostridium butyricum resulted in increased production of the enzyme activity encoded by malQ, 4-α-glucanotransferase. Nucleotide sequence analysis revealed the presence of an open reading frame capable of encoding a protein of 335 amino acids. This protein was found to share 33% amino acid sequence identity with the Bacillus subtilis CcpA (catabolite control protein) repressor, 28% identity with the Streptomyces coelicolor MalR repressor, and 30%, 25%, and 21% amino acid identity with the Escherichia coli repressors GalR, LacI and MalI, respectively. The amino-terminal domain was predicted to be able to form a helix-turn-helix structure, and shared highest similarity with the equivalent functional domain from the E. coli LacI repressor. Interruption of malR by the generation of a frameshift mutation led to a 10-fold increase in MalQ activity. These data suggest that the identified open reading frame encodes a repressor of the C. butyricum malQ gene, and of the adjacent malP gene. The gene has, therefore, been designated malR, and its encoded gene product MalR.  相似文献   

15.
FlgJ is a glycoside hydrolase (GH) enzyme belonging to the Carbohydrate Active enZyme (CAZy) family GH73. It facilitates passage of the bacterial flagellum through the peptidoglycan (PG) layer by cleaving the β-1,4 glycosidic bond between N-acetylglucosamine and N-acetylmuramic acid sugars that comprise the glycan strands of PG. Here we describe the crystal structure of the GH domain of FlgJ from bacterial pathogen Salmonella typhimurium (StFlgJ). Interestingly, the active site of StFlgJ was blocked by the C-terminal α-helix of a neighbouring symmetry mate and a β-hairpin containing the putative catalytic glutamic acid residue Glu223 was poorly resolved and could not be completely modeled into the electron density, suggesting it is flexible. Previous reports have shown that the GH73 enzyme Auto from Listeria monocytogenes is inhibited by an N-terminal α-helix that may occlude the active site in similar fashion. To investigate if the C-terminus of StFlgJ inhibits GH activity, the glycolytic activity of StFlgJ was assessed with and without the C-terminal α-helix. The GH activity of StFlgJ was unaffected by the presence or absence of the α-helix, suggesting it is not involved in regulating activity. Removal of the C-terminal α-helix did, however, allow a crystal structure of the domain to be obtained where the flexible β-hairpin containing residue Glu223 was entirely resolved. The β-hairpin was positioned such that the active site groove was fully solvent-exposed, placing Glu223 nearly 21.6 Å away from the putative general acid/base residue Glu184, which is too far apart for these two residues to coordinate glycosidic bond hydrolysis. The mobile nature of the StFlgJ β-hairpin is consistent with structural studies of related GH73 enzymes, suggesting that a dynamic active site may be common to many GH73 enzymes, in which the active site opens to capture substrate and then closes to correctly orient active site residues for catalysis.  相似文献   

16.
The procedure for obtaining an active recombinant destabilase from the medicinal leech in Escherichia coli cells was developed. The plasmids encoding an analogue of native destabilase, as well as the protein forms carrying polyhistidine sequence at the Cand/or N-terminus of the polypeptide were obtained during the work. The producing strains of different forms of the protein were constructed, the cultivation process was optimized. The conditions of renaturation of destabilase recombinant forms by dialysis and using chromatographic absorbent were selected. The muramidase activity towards cell walls of Micrococcus lysodeikticus bacferia and lytic activity towards E. coli were investigated. The dependence of pH and ionic strength of the solution on the activities was determined. The total antibacterial activity of destabilase towards E. coli was shown.  相似文献   

17.
Previous physiological and pharmacological experiments have demonstrated that the Chlamydomonas flagellar axoneme contains a cAMP-dependent protein kinase (PKA) that regulates axonemal motility and dynein activity. However, the mechanism for anchoring PKA in the axoneme is unknown. Here we test the hypothesis that the axoneme contains an A-kinase anchoring protein (AKAP). By performing RII blot overlays on motility mutants defective for specific axonemal structures, two axonemal AKAPs have been identified: a 240-kD AKAP associated with the central pair apparatus, and a 97-kD AKAP located in the radial spoke stalk. Based on a detailed analysis, we have shown that AKAP97 is radial spoke protein 3 (RSP3). By expressing truncated forms of RSP3, we have localized the RII-binding domain to a region between amino acids 144-180. Amino acids 161-180 are homologous with the RII-binding domains of other AKAPs and are predicted to form an amphipathic helix. Amino acid substitution of the central residues of this region (L to P or VL to AA) results in the complete loss of RII binding. RSP3 is located near the inner arm dyneins, where an anchored PKA would be in direct position to modify dynein activity and regulate flagellar motility.  相似文献   

18.
The complete genome of bacteriophage PaP3 was sequenced in a previous study by our laboratory; however, the PaP3 lysozyme gene could not be identified by homology search. In this study, based on bioinformatic analysis of its secondary structure, we have determined that the protein encoded by the p02 gene of PaP3 is likely to be a lysin. To confirm the function of the p02 gene, a recombinant expression plasmid was constructed by inserting the p02 gene into a pQE-31 plasmid; the recombinant construct was cloned and expressed in Escherichia coli JM109. The lytic activity of the expressed, purified product was observed by gel diffusion assay. The result showed that the recombinant plasmid successfully expressed 6 × his-tagged p02 protein. The expressed product had a growth inhibitory effect on Staphylococcus aureus but not on Pseudomonas aeruginosa or E. coli. However, it retained lytic activity against peptidoglycan from cell walls of P. aeruginosa and E. coli. Therefore, it is supposed that this lysozyme requires the help of holin or other punching proteins to exert lytic effects on live gram-negative bacteria. The results suggest that the p02 protein of PaP3 is a new member of the lysozyme family, which is not completely host-specific and might serve as an anti-staphylococcal agent.  相似文献   

19.
20.
Members of the heat-shock protein (HSP)40 regulate the protein folding activity of HSP70 proteins and help the functional specialization of this molecular chaperone system in various types of cellular events. We have recently identified Hsp40 as a component of flagellar axoneme in the ascidian Ciona intestinalis, suggesting a correlation between Hsp40 related chaperone system and flagellar function. In this study, we have found that Ciona 37-kDa Hsp40 is extracted from KCl-treated axonemes with 0.5 M KI solution and comigrates with radial spoke protein (RSP)3 along with several proteins as a complex through gel filtration and ion exchange columns. Peptide mass fingerprinting with matrix-assisted laser desorption ionization/time of flight/mass spectrometry revealed that other proteins in the complex include a homolog of sea urchin spokehead protein (homolog of RSP4/6), a membrane occupation and recognition nexus repeat protein with sequence similarity with meichroacidin, and a functionally unknown 33-kDa protein. A spoke head protein, LRR37, is not included in the complex, suggesting that the complex constructs the stalk of radial spoke. Immunoelectron microscopy indicates that Hsp40 is localized in the distal portion of spoke stalk, possibly at the junction between spoke head and the stalk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号