首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Banerjee  S Chaudhury 《Life sciences》2001,69(20):2409-2417
The developmental profile of the different isoforms of NaKATPase have been investigated during the first three weeks of postnatal development using primary cultures of isolated glial cells derived from neonatal rat cerebra. Northern and Western blot analysis show that the expression of four isoforms (alpha1, alpha2, beta1 and beta2) in these cells increases progressively between 5 to 20 days of culture. Comparison of the mRNA levels of these isoforms in thyroid hormone deficient (TH def) and thyroid hormone supplemented (TH sup) cells cultured for 5-10 days, revealed for the first time that all four isoforms are sensitive to T3 in the glial cells. Furthermore immunocytochemical staining of these cells with isoform specific NaKATPase antibodies also showed that the localization of the different isoforms in the TH def cells were altered in comparison to that in the TH sup cells. These results establish glial cells as the target cells for the regulation of NaKATPase by TH in the developing brain.  相似文献   

2.
Oligodendrocyte development and thyroid hormone.   总被引:10,自引:0,他引:10  
  相似文献   

3.
Nucleic acid probes derived from the 3' noncoding region of five tubulin cDNAs were used to study the effects of thyroid hormone deficiency on the expression of the mRNAs encoding two alpha (alpha 1 and alpha 2)- and three beta (beta 2, beta 4, and beta 5)-tubulin isotypes in the developing cerebral hemispheres and cerebellum. The content of alpha 1, which markedly declines during development in both brain regions, is maintained at high levels in the hypothyroid cerebellum, whereas it is decreased in the cerebral hemispheres. The alpha 2 level also declines during development and is decreased in both regions by thyroid hormone deficiency, but only during the two first postnatal weeks. Thyroid hormone deficiency slightly increases at all stages the beta 2 level in the cerebellum, whereas a decrease is observed at early stages in the cerebral hemispheres. The beta 5 level seems to be independent of thyroid hormone in the cerebral hemispheres, whereas it decreases at early stages in the hypothyroid cerebellum. Finally, the expression of the brain-specific beta 4 isotype is markedly depressed by thyroid hormone deficiency, particularly in the cerebellum. These data suggest that the genes encoding the tubulin isotypes are, directly or not, differently regulated by thyroid hormone during brain development. This might contribute to abnormal neurite outgrowth seen in the hypothyroid brain and therefore to impairment in brain functions produced by thyroid hormone deficiency.  相似文献   

4.
The mammalian AMP-activated protein kinase is a heterotrimeric serine/threonine protein kinase with multiple isoforms for each subunit (alpha, beta, and gamma) and is activated under conditions of metabolic stress. It is widely expressed in many tissues, including the brain, although its expression pattern throughout the CNS is unknown. We show that brain mRNA levels for the alpha2 and beta2 subunits were increased between embryonic days 10 and 14, whereas expression of alpha1, beta1, and gamma1 subunits was consistent at all ages examined. Immunostaining revealed a mainly neuronal distribution of all isoforms. The alpha2 catalytic subunit was highly expressed in neurons and activated astrocytes, whereas the alpha1 catalytic subunit showed low expression in neuropil. The gamma1 noncatalytic subunit was highly expressed by neurons, but not by astrocytes. Expression of the beta1 and beta2 noncatalytic subunits varied, but some neurons, such as granule cells of olfactory bulb, did not express detectable levels of either beta isoform. Preferential nuclear localization of the alpha2, beta1, and gamma1 subunits suggests new functions of the AMP-activated protein kinase, and the different expression patterns and cellular localization between the two catalytic subunits alpha1 and alpha2 point to different physiological roles.  相似文献   

5.
The microheterogeneity of the alpha and beta isoforms of tubulin in brain cells in culture was studied. The cells were prepared from two precise regions of the embryonic mouse brain (ED15), the striatum and the mesencephalon. It was possible to maintain virtually pure cultures of neuronal or glial cells up to 1 and 4 weeks in vitro, respectively. The tubulin heterogeneity of striatal and mesencephalic neurons was found to be very similar after a few days in culture. More precise examination of pure neurons from the striatum revealed that their tubulin content after 7 days in vitro exhibited the same degree of complexity as a control extract from a 4 day-old mouse brain. In fact, we could detect the presence of at least six alpha and nine beta tubulin isoforms. Among these isoforms a specific family of beta proteins (beta' tubulin) and the more acidic alpha proteins were present. Since these isoforms have, up to now, been found only in tubulin extracts prepared from the nervous system, our experiments suggest that they belong to the neuronal subpopulation of this tissue. This point is reinforced by their complete absence from the tubulin proteins extracted from pure glial cells even after several weeks in vitro. These results lead us to propose that brain tubulin microheterogeneity is associated with the presence of neurons and not of glia and may, therefore, play a specific role in maintaining neuronal shape and function.  相似文献   

6.
Posttranslational modifications of tubulin were analyzed in mouse brain neurons and glia developing in culture. Purified tubulin was resolved by isoelectric focusing. After 3 weeks of culture, neurons were shown to express a high degree of tubulin heterogeneity (8 alpha and 10 beta isoforms), similar to that found in the brain at the same developmental stage. Astroglial tubulin exhibits a less complex pattern consisting of 4 alpha and 4 beta isoforms. After incubation of neuronal and glial cells with 3H-acetate in the presence of cycloheximide, a major posttranslational label was found associated with alpha-tubulin and a minor one with beta-tubulin. The acetate-labeled isotubulins of neurons were resolved by isoelectric focusing into as many as 6 alpha and 7 beta isoforms, while those of astroglia were resolved into only 2 alpha and 2 beta isoforms. The same alpha isoforms were also shown to react with a monoclonal antibody recognizing selectively the acetylated form(s) of alpha-tubulin. Whether acetate-labeling of alpha-tubulin in these cells corresponds to the acetylation of Lys40, as reported for Chlamydomonas reinhardtii, is discussed according to very recent data obtained by protein sequence analysis. Tubulin phosphorylation was analyzed by incubation of cell cultures with 32PO4. No phosphorylation of alpha-tubulin isoforms was detected. A single beta-tubulin isoform (beta'2), expressed only in neurons, was found to be phosphorylated. This isoform is similar to that previously identified in differentiated mouse neuroblastoma cells.  相似文献   

7.
8.
9.
10.
Functionally active preparations of Na+,K(+)-ATPase isozymes from calf brain that contain catalytic subunits of three types (alpha 1, alpha 2, and alpha 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of the membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K(+)-ATPase of the alpha 1 beta 1 type and minor amounts of isozymes of the alpha 2 beta 2 (beta 1) and the alpha 3 beta 1 (beta 2) type. The axolemma contains alpha 2 beta 1- and alpha 3 beta 1 isozymes. A carbohydrate analysis indicated that alpha 1 beta 1 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the beta 1 isoform. An enhanced sensitivity of the alpha 3 catalytic subunit of Na+,K(+)-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 decreases Y493 was localized (residue numbering is that of the human alpha 3 subunit). This sequence corresponds to one of the regions of the greatest variability in alpha 1, alpha 2, alpha 3, and alpha 4-subunits, but at the same time, it is characteristic of the alpha 3 isoforms of various species. The presence of the beta 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K(+)-ATPase alpha 3 beta 1 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the alpha 3 catalytic subunit was shown.  相似文献   

11.
12.
13.
14.
The accumulation of mRNA encoding for hepatic and intestinal T3-receptor (TR) and body and liver masses were measured in fed and 3-week fasted juvenile and swim up stage rainbow trout embryos. Plasma and total body thyroid hormone (TH) levels were measured for juvenile and swim up stages, respectively. Fasted juveniles exhibited a lower hepatosomatic index (HSI), liver mass and plasma T4 and T3 concentrations than fed animals, but there were no changes in body mass or the accumulation of mRNA encoding for either of the TR(alpha) or TR(beta) isoforms in liver or intestine. TR(beta) mRNA accumulation was greater than TR(alpha) mRNA accumulation in both tissues. Fasted embryos had lower whole body TH levels and body, liver and intestinal tract masses, in addition to a lower intestinosomatic index. However, there was no change in HSI. Fasting did not affect whole body or hepatic TR(alpha) and TR(beta) mRNA accumulation, although intestinal tract TR(alpha) and TR(beta) mRNA accumulation was lower in the fasted embryos. The HSI and body mass changes in fasted juvenile and embryo stages, respectively, indicated that both developmental stages were impacted by fasting. Both stages also showed evidence of decreased TH production. The lower TR gene expression in the intestinal tract of fasted embryos may suggest a role for THs in the transitional stage of intestinal development during this period of development.  相似文献   

15.
The diverse functions of thyroid hormones are thought to be mediated by two nuclear receptors, T3R alpha1 and T3R beta, encoded by the genes T3R alpha and T3R beta respectively. The T3R alpha gene also produces a non-ligand-binding protein T3R alpha2. The in vivo functions of these receptors are still unclear. We describe here the homozygous inactivation of the T3R alpha gene which abrogates the production of both T3R alpha1 and T3R alpha2 isoforms and that leads to death in mice within 5 weeks after birth. After 2 weeks of life, the homozygous mice become progressively hypothyroidic and exhibit a growth arrest. Small intestine and bones showed a strongly delayed maturation. In contrast to the negative regulatory function of the T3R beta gene on thyroid hormone production, our data show that the T3R alpha gene products are involved in up-regulation of thyroid hormone production at weaning time. Thus, thyroid hormone production might be balanced through a positive T3R alpha and a negative T3R beta pathway. The abnormal phenotypes observed on the homozygous mutant mice strongly suggest that the T3R alpha gene is essential for the transformation of a mother-dependent pup to an 'adult' mouse. These data define crucial in vivo functions for thyroid hormones through a T3R alpha pathway during post-natal development.  相似文献   

16.
17.
The brain contains two molecular forms of Na,K-ATPase designated alpha found in non-neuronal cells and neuronal soma and alpha + found in axolemma. Previously we have shown that the abundance of both forms (determined by immunoblots) as well as Na,K-ATPase activity increases 10-fold between 4 days before and 20 days after birth (Schmitt, C. A., and McDonough, A. A. (1986) J. Biol. Chem. 261, 10439-10444). Hypothyroidism in neonates blunts these increases. Neonatal, but not adult brain Na,K-ATPase is thyroid hormone (triiodothyronine, T3) responsive. This study defines the period during which brain Na,K-ATPase responds to T3. The start of the critical period was defined by comparing Na,K-ATPase activity and alpha and alpha + abundance in hypothyroid and euthyroid neonates (birth to 30 days of age). For all parameters, euthyroid was significantly higher by 15 days of age. The end of the critical period was defined by dosing hypothyroid neonates with T3 daily (0.1 micrograms/g body weight) beginning at increasing days of age, and sacrificing all at 30 days then assaying enzyme activity and abundance. Those starting T3 treatment on or before day 19 were restored to euthyroid levels of Na,K-ATPase activity and abundance, while those starting T3 treatment on or after day 22 remained at hypothyroid levels of enzyme activity and abundance. We conclude that brain Na,K-ATPase alpha and alpha + isoforms are sensitive to T3 by as late as 15 days of age and that the period of thyroid hormone responsiveness is over by 22 days.  相似文献   

18.
The purpose of this study was to determine the effect of thyroid status on the Na,K-ATPase alpha isoforms and beta in rat heart, skeletal muscle, kidney, and brain at the levels of mRNA, protein abundance, and enzymatic activity. Northern and dot-blot analysis of RNA (euthyroid, hypothyroid, and triiodothyronine-injected hypothyroids = hyperthyroids) and immunoblot analysis of protein (euthyroid and hypothyroid) revealed isoform-specific regulation of Na,K-ATPase by thyroid status in kidney, heart, and skeletal muscle and no regulation of sodium pump subunit levels in the brain. In general, in the transition from euthyroid to hypothyroid alpha 1 mRNA and protein levels are unchanged in kidney and skeletal muscle and slightly decreased in heart, while alpha 2 mRNA and protein are decreased significantly in heart and skeletal muscle. In hypothyroid heart and skeletal muscle, the decrease in alpha 2 protein levels was much greater than the decrease in alpha 2 mRNA levels relative to euthyroid indicating translational or post-translational regulation of alpha 2 protein abundance by triiodothyronine status in these tissues. The regulation of beta subunit by thyroid status is tissue-dependent. In hypothyroid kidney beta mRNA levels do not change, but immunodetectable beta protein levels decrease relative to euthyroid, and the decrease parallels the decrease in Na,K-ATPase activity. In hypothyroid heart and skeletal muscle beta mRNA levels decrease; beta protein decreases in heart and was not detected in the skeletal muscle. These findings demonstrate that the euthyroid levels of expression of alpha 1 in heart, alpha 2 in heart and skeletal muscle, and beta in kidney, heart, and skeletal muscle are dependent on the presence of thyroid hormone.  相似文献   

19.
High concentrations of G proteins, which include multiple isoforms of each subunit, alpha, beta, and gamma, are expressed in the adult brain. In this study, we concentrated attention on changes of these isoforms during embryonic development in the rat brain. Concentrations of gamma2 as well as GoAalpha, GoBalpha, and beta2 were low in early embryogenesis and then increased, whereas expression of gamma5, in contrast, was initially high followed by a drop, with only very low levels observed throughout postnatal development. Among the other isoforms, Gi1alpha, G(s)alpha-short, G12alpha, G13alpha, beta4, gamma3, gamma7, and gamma12 were present in the embryonic brain at low levels, but their levels markedly increased after birth. In contrast, the levels of Gi2alpha, G(s)alpha-long, Gq/11alpha, and beta1 were essentially constant throughout. Immunohistochemical staining of the brain vesicles in the embryos showed gamma5 to be specifically expressed in the proliferative region of the ventricular zone, whereas gamma2 was mainly present in differentiated neuronal cells of the marginal zone. Furthermore, differentiation of P19 mouse embryonal carcinoma cells to neuronal cells with retinoic acid induced the expression of gamma2 and a decrease of gamma5, the major isoform in the undifferentiated state. These results suggest that neuronal differentiation is responsible for the on/off switch of the expression of gamma2 and gamma5 subunits.  相似文献   

20.
Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号