首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been argued that agonist ligands for dopamine D(2/3) receptors recognize a privileged subset of the receptors in living striatum, those which are functionally coupled to intracellular G-proteins. In support of this claim, the D(2/3) agonist [(3)H]-N-propylnorapomorphine ([(3)H]NPA) proved to be more vulnerable to competition from endogenous dopamine than was the antagonist ligand [(11)C]raclopride, measured ex vivo in mouse striatum, and subsequently in multi-tracer PET studies of analogous design. Based on these results, we predicted that prolonged dopamine depletion would result in a preferential increase in agonist binding, and a lesser competition from residual dopamine to the agonist binding. To test this hypothesis we used autoradiography to measure [(3)H]NPA and [(3)H]raclopride binding sites in hemi-parkinsonian rats with unilateral 6-OHDA lesions, with and without amphetamine challenge. Unilateral lesions were associated with a more distinct increase in [(3)H]NPA binding ex vivo than was seen for [(3)H]raclopride binding in vitro. Furthermore, this preferential asymmetry in [(3)H]NPA binding was more pronounced in amphetamine treated rats. We consequently predict that agonist ligands should likewise be fitter than antagonists for detecting responses to denervation in positron emission tomography studies of idiopathic Parkinson's disease. Agonist binding increases in vivo are likely to reflect the composite of a sensitization-like phenomenon, and relatively less competition from endogenous dopamine, as seen in the lesioned side of 6-OHDA induced hemi-parkinsonism.  相似文献   

2.
Target size analysis of the D2 dopamine receptor in the bovine striatum revealed the presence of two populations of this receptor, in terms of apparent molecular size. The size of large target was approximately 150 X 10(4) daltons, while that of small target was 11 X 10(4) daltons. The antagonist [3H]spiperone labeled both large and small sized D2 receptors, while agonist [3H]n-propylapomorphine (NPA) labeled only the former. In addition, the apparent molecular size of a functional unit for the GTP effect was calculated to be 150 X 10(4) daltons, such appearing to be identical to that of large target sized D2 dopamine receptors. Therefore, the large sized D2 receptor, probably an oligomeric complex consisting of D2 receptor recognition protein and guanine nucleotide regulatory protein, has a high affinity for both agonist and antagonist, while the small sized receptor, probably a monomeric or dimeric receptor recognition protein, has a high affinity for only the antagonist.  相似文献   

3.
Pergolide is a potent, direct-acting dopamine agonist used in treating Parkinson's disease. It is an agonist found recently to have high affinity for D3 receptors. The affinity of pergolide for D1 receptors is lower than for D2 receptors, and there have been some reports that it may not interact with D1 receptors in vivo at doses used to activate D2 receptors. A growing body of evidence suggests that pergolide does occupy and activate D1 receptors in vivo, although the relevance to therapeutic efficacy in Parkinson's disease needs further study.  相似文献   

4.
[11C]-(+)-PHNO (4-propyl-9-hydroxynaphthoxazine) is a new agonist radioligand that provides a unique opportunity to measure the high-affinity states of the D2 receptors (D2-high) using positron emission tomography (PET). Here we report on the distribution, displaceablity, specificity and modeling of [11C]-(+)-PHNO and compare it with the well characterized antagonist D2 radioligand, [11C]raclopride, in cat. [11C]-(+)-PHNO displayed high uptake in striatum with a mean striatal binding potential (BP) of 3.95 +/- 0.85. Pre-treatment with specific D1 (SCH23390), D2 (raclopride, haloperidol) and D3 receptor (SB-277011) antagonists indicated that [11C]-(+)-PHNO binding in striatum is specific to D2 receptors. Within-subject comparisons showed that [11C]-(+)-PHNO BP in striatum was almost 2.5-fold higher than that measured with [11C]-(-)-NPA ([11C]-(-)-N-propyl-norapomorphine). Comparison of the dose-effect of amphetamine (0.1, 0.5 and 2 mg/kg; i.v.) showed that [11C]-(+)-PHNO was more sensitive to the dopamine releasing effect of amphetamine than [11C]raclopride. Amphetamine induced up to 83 +/- 4% inhibition of [11C]-(+)-PHNO BP and only up to 56 +/- 8% inhibition of [11C]raclopride BP. Scatchard analyses of [11C]-(+)-PHNO and [11C]raclopride bindings in two cats showed that the Bmax obtained with the agonist (29.6 and 32.9 pmol/mL) equalled that obtained with the antagonist (30.6 and 33.4 pmol/mL). The high penetration of [11C]-(+)-PHNO in brain, its high signal-to-noise ratio, its favorable in vivo kinetics and its high sensitivity to amphetamine shows that [11C]-(+)-PHNO has highly suitable characteristics for probing the D2-high with PET.  相似文献   

5.
Mammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider-2 (S2) cells and screened for their pharmacological properties. Saturable, dose-dependent, high affinity binding of the D1-selective antagonist [3H]SCH-23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose-dependent, high affinity binding of the D2-selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)-enantiomer of the D1-selective agonist SKF38393 with higher affinity than the (-)-enantiomer, while the dopamine D2 receptor bound the (-)-enantiomer of the D2-selective agonist norpropylapomorphine with higher affinity than the (+)-enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPgammaS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants.  相似文献   

6.
A series of conformationally-flexible analogues was prepared and their affinities for D2-like dopamine (D2, D3 and D4) were determined using in vitro radioligand binding assays. The results of this structure-activity relationship study identified one compound, 15, that bound with high affinity (K(i) value=2nM) and moderate selectivity (30-fold) for D3 compared to D2 receptors. In addition, this series of compounds were also tested for affinity at sigma1 and sigma2 receptors. We evaluated the affinity of these dopaminergic compounds at sigma receptors because (a) several antipsychotic drugs, which are high affinity antagonists at dopamine D2-like receptors, also bind to sigma receptors and (b) sigma receptors are expressed ubiquitously and at high levels (picomoles per mg proteins). It was observed that a number of analogues displayed high affinity and excellent selectivity for sigma2 versus sigma1 receptors. Consequently, these novel compounds may be useful for characterizing the functional role of sigma2 receptors and for imaging the sigma2 receptor status of tumors in vivo with PET.  相似文献   

7.
The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (DA) receptors in extrapyramidal and limbic preparations of rat brain tissue. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulating adenylate cyclase (D-1 sites) and in competing for high affinity binding of 3H-spiroperidol (D-2 sites) and of 3H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity or higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical and functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.  相似文献   

8.
The neurotransmitter dopamine plays an important role in the regulation of behavior in both vertebrates and invertebrates. In mammals, dopamine binds and activates two classes of dopamine receptors, D1-like and D2-like receptors. However, D2-like dopamine receptors in Caenorhabditis elegans have not yet been characterized. We have cloned a cDNA encoding a putative C. elegans D2-like dopamine receptor. The deduced amino acid sequence of the cloned cDNA shows higher sequence similarities to vertebrate D2-like dopamine receptors than to D1-like receptors. Two splice variants that differ in the length of their predicted third intracellular loops were identified. The receptor heterologously expressed in cultured cells showed high affinity binding to [125I]iodo-lysergic acid diethylamide. Dopamine showed the highest affinity for this receptor among several amine neurotransmitters tested. Activation of the heterologously expressed receptor led to the inhibition of cyclic AMP production, confirming that this receptor has the functional property of a D2-like receptor. We have also analyzed the expression pattern of this receptor and found that the receptor is expressed in several neurons including all the dopaminergic neurons in C. elegans.  相似文献   

9.
Specific binding of [3H]N-propylnorapomorphine [( 3H]NPA) to 3,4-dihydroxyphenylethylamine (dopamine) D-2 receptors was investigated in rat striatum in vitro. For various dopamine receptor substances, the rank order of potency to inhibit [3H]NPA binding was spiroperidol greater than or equal to NPA greater than LY 171555 greater than SCH 23390 greater than SKF 38393. A single high-affinity binding site was found in membranes prepared in either Tris-citrate buffer or imidazole buffer; the affinity constants were 0.11 and 0.76 nM, respectively. The number of receptors (33 pmol/g wet weight) was independent of whether the membranes were prepared in Tris-citrate buffer or imidazole buffer and was similar to the number of receptors estimated by [3H]spiroperidol binding to dopamine receptors. Irradiation inactivation of frozen whole rat striata showed a monoexponential loss of [3H]NPA binding sites without a change in the binding affinity. The target size of the [3H]NPA binding site was 81,000 daltons, which shows that the functional molecular entity to bind the dopamine D-2 agonist was smaller than the molecular entity to bind the dopamine D-2 antagonist [3H]spiroperidol (target size, 137,000 daltons).  相似文献   

10.
On the basis of affinity differences for spiperone, two binding sites for [3H](+/-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene ([3H]ADTN) in the rat brain could be distinguished: "D3" with a low and "D4" with a high affinity for spiperone. Evidence is provided that D3 and D4 sites are related to high agonist affinity states of the D1 and D2 dopamine receptors, respectively. Various well-known selective D1 and D2 agonists and antagonists showed potencies at these sites in agreement with this hypothesis. A comparison of the Bmax values for [3H]ADTN binding to D3 and D4 sites with the numbers of D1 receptors (labelled by [3H]SCH 23390) and of D2 receptors (labelled by [3H]spiperone), both in the striatum and in the mesolimbic system, indicated that under the conditions used for 3H-agonist binding experiments, both populations of D1 and D2 receptors were converted to their high agonist affinity states to a considerable, although different extent. In fact, when competition experiments with [3H]spiperone were performed under the conditions otherwise used for [3H]ADTN binding experiments (instead of the conditions usually used for antagonist binding), substantial shifts of the displacement curves of 3,4-dihydroxyphenylethylamine (dopamine) and ADTN toward higher affinities were observed. A comparison of the effects of various agonists and antagonists in the [3H]ADTN binding experiments and in functional tests revealed a significant correlation between their potencies at D4 binding sites and at D2 receptors modulating the release of [3H]acetylcholine from striatal slices. However, in the situation of the D1/D3 pair, when the measurement of adenylate cyclase activity was taken as a functional test for D1 receptors, agonists were more active in the binding than in the functional test, whereas for many antagonists the opposite was found. The results are discussed with regard to the classification and functional aspects of brain dopamine receptors.  相似文献   

11.
The synthesis and preliminary pharmacological evaluation of 8,9-dihydroxy-1,2,3,11b-tetrahydrochromeno[4,3,2,-de]isoquinoline (5, now named dinoxyline) is described. This molecule was designed as a potential bioisostere that would conserve the essential elements of our beta-phenyldopamine D(1) pharmacophore (i.e., position and orientation of the nitrogen, hydroxyls, and phenyl rings). Previously, we have rigidified these elements using alkyl bridges, as exemplified in the dopamine D(1) full agonist molecules dihydrexidine (1) and dinapsoline (2). This approach has been modified and we now show that it is possible to tether these elements using an ether linkage. Preliminary pharmacology has revealed that 5 is a potent full D(1) agonist (K(0.5) <10 nM; EC(50)=30 nM), but also has high affinity for brain D(2)-like and cloned D(2) and D(3) receptors. Interestingly, whereas 1 and 2 and their analogues have only moderate affinity for the human D(4) receptor, 5 also has high affinity for this isoform. Moreover, although N-alkylation of 1 and 2 increases D(2) affinity, the N-allyl (15) and N-n-propyl (17) derivatives of 5 had decreased D(2) affinity. Therefore, 5 may be engaging different amino acid residues than do 1 and 2 when they bind to the D(2) receptor. This is the first example of a ligand with high affinity at all dopamine receptors, yet with functional characteristics similar to dopamine. These rigid ligands also will be useful tools to determine specific residues of the receptor transmembrane domains that are critical for agonist ligand selectivity for the D(4) receptor.  相似文献   

12.
125I-Spiperone binds with high affinity (KD 0.3 nM) to a single specific site (Bmax 34 pmol/g wet weight) in homogenates of rat corpus striatum. Specific binding is about 40-60 percent of total binding and is displaced stereo-specifically by butaclamol and clopenthixol. Neuroleptic drugs of various classes are potent inhibitors of 125I-spiperone binding (Ki's 1-10 nM). Selective dopamine antagonists such as sulpiride (Ki 50 nM) and dopamine agonists such as apomorphine (Ki 200 nM) are also potent inhibitors. The drug specificity of 125I-spiperone binding correlates well with that of 3H-spiperone binding, providing good evidence that 125I-spiperone labels D2 dopamine receptors in striatal membranes. 125I-Spiperone, with its high specific activity (2200 Ci/mmol) may prove to be a useful ligand in studies examining D2 dopamine receptors in soluble preparations and by autoradiography. Furthermore iodinated spiperone may be useful in radioreceptor assays of neuroleptic drug levels and, in a 123I-labeled form, for imaging of dopamine receptors, in vivo, using single photon tomography.  相似文献   

13.
The effect of neurotensin on binding characteristics of dopamine D1 receptors was examined in the rat striatal membranes through radioreceptor assay. Neurotensin or its analogs were added to incubation medium of[3H]SCH 23390 saturation or dopamine/[3H]SCH 23390 inhibition experimental systems. Neurotensin did not modulate D1 antagonist binding but converted a part of D1 agonist high affinity binding sites to a low affinity state. Neurotensin8–13 had the same potency as neurotensin itself, whereas neurotensin1–8 had only weak activity in modulating D1 agonist binding. GTP and neurotensin had the same effect on D1 agonist binding. However, when both neurotensin and GTP were added, the result was the same as with either alone.

These data suggest that neurotensin modulates the functional state of D1 receptors probably via a GTP binding protein in the rat striatum.  相似文献   


14.
To delineate the structural determinants involved in the constitutive activation of the D1 receptor subtypes, we have constructed chimeras between the D1A and D1B receptors. These chimeras harbored a cognate domain corresponding to transmembrane regions 6 and 7 as well as the third extracellular loop (EL3) and cytoplasmic tail, a domain referred herein to as the terminal receptor locus (TRL). A chimeric D1A receptor harboring the D1B-TRL (chimera 1) displays an increased affinity for dopamine that is indistinguishable from the wild-type D1B receptor. Likewise, a chimeric D1B receptor containing the D1A-TRL cassette (chimera 2) binds dopamine with a reduced affinity that is highly reminiscent of the dopamine affinity for the wild-type D1A receptor. Furthermore, we show that the agonist independent activity of chimera 1 is identical to the wild-type D1B receptor whereas the chimera 2 displays a low agonist independent activity that is indistinguishable from the wild-type D1A receptor. Dopamine potencies for the wild-type D1A and D1B receptor were recapitulated in cells expressing the chimera 2 or chimera 1, respectively. However, the differences observed in agonist-mediated maximal activation of adenylyl cyclase elicited by the D1A and D1B receptors remain unchanged in cells expressing the chimeric receptors. To gain further mechanistic insights into the structural determinants of the TRL involved in the activation properties of the D1 receptor subtypes, we have engineered two additional chimeric D1 receptors that contain the EL3 region of their respective cognate wild-type counterparts (hD1A-EL3B and hD1B-EL3A). In marked contrast to chimera 1 and 2, dopamine affinity and constitutive activation were partially modulated by the exchange of the EL3. Meanwhile, hD1A-EL3B and hD1B-EL3A mutant receptors display a full switch in the agonist-mediated maximal activation, which is reminiscent of their cognate wild-type counterparts. Overall, our studies suggest a fundamental role for the TRL in shaping the intramolecular interactions implicated in the constitutive activation and coupling properties of the dopamine D1 receptor subtypes.  相似文献   

15.
We have investigated the structure of dopamine (DA) D2 receptors present in an estrone-induced, prolactin (PRL)-secreting, DA-sensitive adenoma and in two PRL-secreting and DA-insensitive transplantable tumors 7315a and MtTW15, in order to identify better the anomalies present in DA-resistant lactotrophs. D2 receptors were found in both a high- and a low-affinity state in adenomatous lactotrophs as shown by displacement studies with the agonist N-propylnorapomorphine (NPA), but only in the low-affinity state in the two DA-resistant tumors. Treatment with the alkylating agent N-ethylmaleimide induced a disappearance of the high-affinity state of the D2 receptor in the adenoma and a reduction in receptor concentration, but did not have any effect on the affinity of receptors present in DA-resistant tumors. Moreover, target size analysis and radiation inactivation studies of D2 receptors, using membranes preincubated with NPA and [3H]spiperone as ligand or using [3H]NPA as ligand on membranes preparations, have shown the presence of distinct structural differences between adenomatous and tumoral D2 receptors and between the two tumoral receptors themselves; these results suggest that the normal functional unit of the D2 receptor is a dimer associated with a guanine nucleotide-binding protein (G protein) subunit and that tumoral D2 receptors may exist in various polymeric forms unassociated with G proteins. The anomalies found to be present in tumoral D2 receptor complexes may be responsible for the insensitivity of these tumors to dopaminergic agonists' inhibitory activity on PRL release and tumor growth.  相似文献   

16.
Pallidal dopamine, GABA and the endogenous opioid peptides enkephalins have independently been shown to be important controllers of sensorimotor processes. Using in vivo microdialysis coupled to liquid chromatography-mass spectrometry and a behavioral assay, we explored the interaction between these three neurotransmitters in the rat globus pallidus. Amphetamine (3 mg/kg i.p.) evoked an increase in dopamine, GABA and methionine/leucine enkephalin. Local perfusion of the dopamine D(1) receptor antagonist SCH 23390 (100 μM) fully prevented amphetamine stimulated enkephalin and GABA release in the globus pallidus and greatly suppressed hyperlocomotion. In contrast, the dopamine D(2) receptor antagonist raclopride (100 μM) had only minimal effects suggesting a greater role for pallidal D(1) over D(2) receptors in the regulation of movement. Under basal conditions, opioid receptor blockade by naloxone perfusion (10 μM) in the globus pallidus stimulated GABA and inhibited dopamine release. Amphetamine-stimulated dopamine release and locomotor activation were attenuated by naloxone perfusion with no effect on GABA. These findings demonstrate a functional relationship between pallidal dopamine, GABA and enkephalin systems in the control of locomotor behavior under basal and stimulated conditions. Moreover, these findings demonstrate the usefulness of liquid chromatography-mass spectrometry as an analytical tool when coupled to in vivo microdialysis.  相似文献   

17.
Changes in medial prefrontal cortex (mPFC) dopamine receptor expression and in mPFC projections to the nucleus accumbens in adolescence suggest that there may be age differences in the regulation of drug‐related behavior by the mPFC. The age‐specific role of prelimbic D1 dopamine receptors on amphetamine‐induced locomotor activity was investigated. In experiment 1, rats aged postnatal day 30 (P30), P45, and P75, corresponding to early and late adolescence and adulthood, were given an injection of D1 and D2 antagonists into the prelimbic mPFC before a systemic injection of 1.5 mg/kg of amphetamine and locomotor activity was recorded. In experiment 2, effects of intra‐prelimbic injections of a D1 agonist and antagonist on locomotor activity produced by a lower dose (0.5 mg/kg) of amphetamine were investigated. D2 receptor antagonist did not alter amphetamine‐induced activity, whereas the D1 receptor antagonist reduced activity produced by 1.5 mg/kg of amphetamine more in P30 than in P45 and P75 rats. In addition, D1 agonist enhanced the locomotor activating effects of 0.5 mg/kg of amphetamine in adolescent rats and decreased activity in adult rats. These results suggest that insufficient activation of mPFC D1 receptors may underlie the reduced activity at the low dose of amphetamine in early adolescent compared to adult rats. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

18.
LS‐3‐134 is a substituted N‐phenylpiperazine derivative that has been reported to exhibit: (i) high‐affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100‐fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low‐affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin‐dependent activation of the adenylyl cyclase inhibition assay, LS‐3‐134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]‐labeled LS‐3‐134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10–15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS‐3‐134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [3H]LS‐3‐134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.  相似文献   

19.
Various levels of organisation in the central nervous system can be distinguished, ranging from the molecular, the cellular, the multicellular and the neuronal system level. The relationship between receptor function and behaviour is focussed to the dopamine D2 type receptor of the striatal complex in relation to extrapyramidal and limbic systems. In the striatal complex a striosomal and a matrix compartment can be distinguished. The matrix compartment can be considered as a part of the extrapyramidal system and is innervated by the motor cortex and by the dopaminergic neurons of the ventral tegmental, the dorsal substantia nigra and the retrorubral area. This compartment has a relatively high density of D2 receptors. The striosomes are innervated by e.g. the prelimbic cortex and dopamine neurones of the ventral part of the substantia nigra; here the density of D2 receptors are lower. Under normal conditions most of the D2 receptors are occupied by endogenous dopamine, and postsynaptic (e.g. cholinergic) function is therefore sensitive to antagonists; e.g. antipsychotics. Exposure to drugs such as amphetamine produces a substantial overflow of dopamine from nerve terminals leading to the activation of remote dopamine receptors, that may belong to the system that normally is not influenced by these nerve terminals (defined here as extra synaptic receptor activation). A loss of the normal spatial-temporal relationships may also occur during L-DOPA therapy in Parkinson's disease. In this illness, due to degeneration of dopaminergic innervation, several dopamine receptors have become non-synaptic. In these states of intoxication the normal spatial/temporal organization is lost and such a loss may contribute to behavioural impairments.  相似文献   

20.
3,4-Dihydroxyphenylethylamine (dopamine) D2 receptors, solubilized from bovine striatal membranes using a cholic acid-NaCl combination, exhibited the typical pharmacological characteristics of both agonist and antagonist binding. The rank order potency of the agonists and antagonists to displace [3H]spiroperidol binding was the same as that observed with membrane-bound receptors. Computer-assisted analysis of the [3H]spiroperidol/agonist competition curves revealed the retention of high- and low-affinity states of the D2 receptor in the solubilized preparations and the proportions of receptor subpopulations in the two affinity states were similar to those reported in membrane. Guanine nucleotide almost completely converted the high-affinity sites to low-affinity sites for the agonists. The binding of the high-affinity agonist [3H]N-n-propylnorapomorphine ([3H]NPA) was clearly demonstrated in the solubilized preparations for the first time. Addition of guanylyl-imidodiphosphate completely abolished the [3H]NPA binding. When the solubilized receptors were subjected to diethylaminoethyl-Sephacel chromatography, the dopaminergic binding sites eluted in two distinct peaks, showing six- to sevenfold purification of the receptors in the major peak. Binding studies performed on both peaks indicated that the receptor subpopulation present in the first peak may have a larger proportion of high-affinity binding sites than the second peak. The solubilized preparation also showed high-affinity binding of [35S]guanosine-5'-(gamma-thio)triphosphate, a result suggesting the presence of guanine nucleotide binding sites, which may interact with the solubilized D2 receptors. These data are consistent with the retention of the D2 receptor-guanine nucleotide regulatory protein complex in the solubilized preparations and should provide a suitable model system to study the receptor-effector interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号