首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most flagellar proteins of Salmonella are exported to their assembly destination via a specialized apparatus. This apparatus is a member of the type III superfamily, which is widely used for secretion of virulence factors by pathogenic bacteria. Extensive studies have been carried out on the export of several of the flagellar proteins, most notably the hook protein (FlgE), the hook-capping protein (FlgD), and the filament protein flagellin (FliC). This has led to the concept of two export specificity classes, the rod/hook type and the filament type. However, little direct experimental evidence has been available on the export properties of the basal-body rod proteins (FlgB, FlgC, FlgF, and FlgG), the putative MS ring-rod junction protein (FliE), or the muramidase and putative rod-capping protein (FlgJ). In this study, we have measured the amounts of these proteins exported before and after hook completion. Their amounts in the culture supernatant from a flgE mutant (which is still at the hook-type specificity stage) were much higher than those from a flgK mutant (which has advanced to the filament-type specificity stage), placing them in the same class as the hook-type proteins. Overproduction of FliE, FlgB, FlgC, FlgF, FlgG, or FlgJ caused inhibition of the motility of wild-type cells and inhibition of the export of the hook-capping protein FlgD. We also examined the question of whether export and translation are linked and found that all substrates tested could be exported after protein synthesis had been blocked by spectinomycin or chloramphenicol. We conclude that the amino acid sequence of these proteins suffices to mediate their recognition and export.  相似文献   

2.
The bacterial flagellar basal body is a rotary motor. It spans the cytoplasmic and outer membranes and drives rapid rotation of a long helical filament in the cell exterior. The flagellar rod at its central axis is a drive shaft that transmits torque through the hook to the filament to propel the bacterial locomotion. To study the structure of the rod in detail, we have established purification procedures for Salmonella rod proteins, FlgB, FlgC, FlgF, FlgG, and also for FliE, a rod adapter protein, from an Escherichia coli expression system. While FlgF was highly soluble, FlgB, FlgC, FlgG and FliE tended to self or cross-aggregate into fibrils in solutions at neutral pH or below, at high ionic strength, or at high protein concentration. These aggregates were characterized to be beta-amyloid fibrils, unrelated to the rod structure formed in vivo. Under non-aggregative conditions, no protein-protein interactions were detected between any pairs of these five proteins, suggesting that their spontaneous, template-free polymerization is strongly suppressed. Limited proteolyses showed that FlgF and FlgG have natively unfolded N and C-terminal regions of about 100 residues in total just as flagellin does, whereas FlgB, FlgC and FliE, which are little over 100 residues long, are unfolded in their entire peptide chains. These results together with other data indicate that all of the ten flagellar axial proteins share structural characteristics and folding dynamics in relation to the mechanism of their self-assembly into the flagellar axial structure.  相似文献   

3.
A Salmonella typhimurium strain possessing a mutation in the fliF gene (coding for the component protein of the M ring of the flagellar basal body) swarmed poorly on a semisolid plate. However, cells grown in liquid medium swam normally and did not show any differences from wild-type cells in terms of swimming speed or tumbling frequency. When mutant cells were grown in a viscous medium, detached bundles of flagellar filaments as long as 100 microns were formed and the cells had impaired motility. Electron microscopy and immunoelectron microscopy revealed that the filaments released from the cells had the hook and a part of the rod of the flagellar basal body still attached. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis showed that the rod portion of the released structures consisted of the 30-kilodalton FlgG protein. Double mutants containing this fliF mutation and various che mutations were constructed, and their behavior in viscous media was analyzed. When the flagellar rotation of the mutants was strongly biased to either a counterclockwise or a clockwise direction, detached bundles were not formed. The formation of large bundles was most extreme in mutants weakly biased to clockwise rotation.  相似文献   

4.
We have examined the cytoplasmic components (FliH, FliI and FliJ) of the type III flagellar protein export apparatus, plus the cytoplasmic domains (FlhAC and FlhBC) of two of its six membrane components. FliH, FlhAC and FliJ, when overproduced, caused inhibition of motility of wild-type cells and inhibition of the export of substrates such as the hook protein FlgE. Co-overproduction of FliH and FliI substantially relieved the inhibition caused by FliH, suggesting that it is excess free FliH that is inhibitory and that FliH and FliI form a complex. We purified His-FLAG-tagged versions of: (i) export components FliH, FliI, FliJ, FlhAC and FlhBC; (ii) rod/hook-type export substrates FlgB (rod protein), FlgE (hook protein), FlgD (hook capping protein) and FliE (basal body protein); and (iii) filament-type export substrates FlgK and FlgL (hook-filament junction proteins) and FliC (flagellin). We tested for protein-protein interactions by affinity blotting. In many cases, a given protein interacted with more than one other component, indicating that there are likely to be multiple dynamic interactions or interactions that involve more than two components. Interactions of FlhBC with rod/hook-type substrates were strong, whereas those with filament-type substrates were very weak; this may reflect the role of FlhB in substrate specificity switching. We propose a model for the flagellar export apparatus in which FlhA and FlhB and the other four integral membrane proteins of the apparatus form a complex at the base of the flagellar motor. A soluble complex of at least three proteins (FliH, FliI and FliJ) bind the protein to be exported and then interact with the complex at the motor to deliver the protein, which is then exported in an ATP-dependent process mediated by FliI.  相似文献   

5.
6.
We isolated and characterized spontaneous mutants with defects in the 147-amino-acid Salmonella protein FliJ, which is a cytoplasmic component of the type III flagellar export apparatus. These mutants, including ones with null mutations, have the ability to form swarms on motility agar plates after prolonged incubation at 30 degrees C; i.e., they display a leaky motile phenotype. One mutant, SJW277, which formed significantly bigger swarms than the others, encoded only the N-terminal 73 amino acids of FliJ, one-half of the protein. At 30 degrees C, overproduction of this mutant protein improved, to wild-type levels, both motility and the ability to export both rod/hook-type (FlgD; hook capping protein) and filament-type (FliC; flagellin) substrates. At 42 degrees C, however, export was inhibited, indicating that the mutant FliJ protein was temperature sensitive. Taking advantage of this, we performed temperature upshift experiments, which demonstrated that FliJ is directly required for the export of FliC. Co-overproduction of FliJ and either of two export substrates, FliE or FlgG, hindered their aggregation in the cytoplasm. We conclude that FliJ is a general component of the flagellar export apparatus and has a chaperone-like activity for both rod/hook-type and filament-type substrates.  相似文献   

7.
8.
FlgD is known to be absolutely required for hook assembly, yet it has not been detected in the mature flagellum. We have overproduced and purified FlgD and raised an antibody against it. By using this antibody, we have detected FlgD in substantial amounts in isolated basal bodies from flgA, flgE, flgH, flgI, flgK, and fliK mutants, in much smaller amounts in those from the wild type and flgL, fliA, fliC, fliD, and fliE mutants, and not at all in those from flgB, flgD, flgG, and flgJ mutants. In terms of the morphological assembly pathway, these results indicate that FlgD is first added to the structure when the rod is completed and is discarded when the hook, having reached its mature length, has the first of the hook-filament junction proteins, FlgK, added to its tip. Immunoelectron microscopy established that FlgD initially is located at the distal end of the rod and eventually is located at the distal end of the hook. Thus, it appears to act as a hook-capping protein to enable assembly of hook protein subunits, much as another flagellar protein, FliD, does for the flagellin subunits of the filament. However, whereas FliD is associated with the filament tip indefinitely, FlgD is only transiently associated with the hook tip; i.e., it acts as a scaffolding protein. When FlgD was added to the culture medium of a flgD mutant, cells gained motility; thus, although the hook cap is normally added endogenously, it can be added exogenously. When culture media were analyzed for the presence of hook protein, it was found only with the flgD mutant and, in smaller amounts, the fliK (polyhook) mutant. Thus, although FlgD is needed for assembly of hook protein, it is not needed for its export.  相似文献   

9.
The flagellar basal body of Salmonella typhimurium consists of four rings surrounding a rod. The rod, which is believed to transmit motor rotation to the filament, is not well characterized in terms of its structure and composition. FlgG is known to lie within the distal portion of the rod, in the region where it is surrounded by the L and P rings, just before the rod-hook junction. The FlgC and FlgF proteins are also known to be flagellar basal-body components; by comparison of deduced and experimental N-terminal amino acid sequences we show here that FlgB is a basal-body protein. The flgB, flgC, flgF and flgG gene sequences and the deduced protein sequences are presented. The four proteins are clearly related to each other in primary sequence, especially toward the N and C termini, supporting the hypothesis (based on examination of basal-body subfractions) that FlgB, FlgC and FlgF are, like FlgG, rod proteins. From this and other information we suggest that the rod is the cell-proximal part of a segmented axial structure of the flagellum, with FlgB, FlgC and FlgF located (in unknown order) in successive segments of the proximal rod, followed by FlgG located in the distal rod; the axial structure then continues with the hook, HAPs and filament. Although the rod is external to the cell membrane, none of the four rod proteins contains a consensus signal sequence for the primary export pathway; comparison with the experimentally determined N-terminal amino acid sequence indicates that FlgB has had its N-terminal methionine removed, while the other three are not processed at all. This demonstrates that these proteins are not exported by the primary cellular pathway, and suggests that they are exported by the same flagellum-specific pathway as the flagellar filament protein flagellin. The observed sequence similarities among the rod proteins, especially a six-residue consensus motif about 30 residues in from the N terminus, may constitute a recognition signal for this pathway or they may reflect higher-order structural similarities within the rod.  相似文献   

10.
The C-terminal half of the Salmonella flagellar protein FlgJ has peptidoglycan hydrolyzing activity and it has been suggested that it is a flagellum-specific muramidase which locally digests the peptidoglycan layer to permit assembly of the rod structure to proceed through the periplasmic space. It was also suggested that FlgJ might be involved in rod formation itself, although there was no direct evidence for this. We purified basal body structures from SJW1437(flgJ) transformed with plasmids encoding various mutant FlgJ proteins and found that these basal bodies possessed the periplasmic P ring but lacked the outer membrane L ring; they also lacked a hook at their distal end. All of these mutant FlgJ proteins had an altered or missing C-terminal domain but had at least the first 151 amino acid residues of the N-terminal domain. Immunoblotting analysis of fractionated cell extracts revealed that a rod/hook export class protein, FlgD, was exported to the periplasm but not to the culture supernatant in these mutants. FlgJ was shown to physically interact with several proteins, and especially FliE and FlgB, which are believed to reside at the cell-proximal end of the rod. On the basis of these results, we conclude that the N-terminal 151 amino acid residues of FlgJ are directly involved in rod formation and that the muramidase activity of FlgJ, though needed for formation of the L ring and subsequent events such as hook formation, is not essential for rod or P ring formation. In contrast, muramidase activity alone does not support rod assembly.  相似文献   

11.
The MS ring of the flagellar basal body of Salmonella is an integral membrane structure consisting of about 26 subunits of a 61-kDa protein, FliF. Out of many nonflagellate fliF mutants tested, three gave rise to intergenic suppressors in flagellar region II. The pseudorevertants swarmed, though poorly; this partial recovery of motile function was shown to be due to partial recovery of export function and flagellar assembly. The three parental mutants were all found to carry the same mutation, a six-base deletion corresponding to loss of Ala-174 and Ser-175 in the predicted periplasmic domain of the FliF protein. The 19 intergenic suppressors identified all lay in flhA, and they consisted of 10 independent examples at the nucleotide level or 9 at the amino acid level. Since two of the nine corresponded to different substitutions at the same amino acid position, only eight positions in the FlhA protein have given rise to suppressors. Thus, FliF-FlhA intergenic suppression is a fairly rare event. FlhA is a component of the flagellar protein export apparatus, with an integral membrane domain encompassing the N-terminal half of the sequence and a cytoplasmic C-terminal domain. All of the suppressing mutations lay within the integral membrane domain. These mutations, when placed in a wild-type fliF background, had no mutant phenotype. In the fliF mutant background, mutant FlhA was dominant, yielding a pseudorevertant phenotype. Wild-type FlhA did not exert significant negative dominance in the pseudorevertant background, indicating that it does not compete effectively with mutant FlhA for interaction with mutant FliF. Mutant FliF was partially dominant over wild-type FliF in both the wild-type and second-site FlhA backgrounds. Membrane fractionation experiments indicated that the fliF mutation, though preventing export, was mild enough to permit assembly of the MS ring itself, and also assembly of the cytoplasmic C ring onto the MS ring. The data from this study provide genetic support for a model in which at least the FlhA component of the export apparatus physically interacts with the MS ring within which it is housed.  相似文献   

12.
13.
The Escherichia coli flaA gene product (also called cheC) plays a crucial role in switching flagellar rotational direction during chemotactic responses. Wild-type and mutant alleles have been cloned onto plasmid vectors, and the gene product has been identified as a 37,000-dalton protein. The flaA product appeared as a soluble protein in the cytoplasm when overproduced in minicells and maxicells. The protein could not be detected in flagellar basal structures purified from a wild-type strain. To assess the effects of altered flaA expression, the gene was fused to a synthetic tac promoter that could be regulated by the addition of an inducer. Overproduction resulted in strong counterclockwise flagellar rotational bias and partial paralysis of flagellar motors. These results suggest that the flaA protein provides the interface between the flagellar machinery and the chemotaxis signaling system in a motor structure external to the basal body.  相似文献   

14.
Morphological pathway of flagellar assembly in Salmonella typhimurium.   总被引:14,自引:0,他引:14  
The process of flagellar assembly was investigated in Salmonella typhimurium. Seven types of flagellar precursors produced by various flagellar mutants were purified by CsCl density gradient protocol. They were characterized morphologically by electron microscopy, and biochemically by two-dimensional gel electrophoresis. The MS ring is formed in the absence of any other flagellar components, including the switch complex and the putative export apparatus. Four proteins previously identified as rod components, FlgB, FlgC, FlgF, FlgG, and another protein, FliE, assemble co-operatively into a stable structure. The hook is formed in two distinct steps; formation of its proximal part and elongation. Proximal part formation occurs, but elongation does not occur, in the absence of the LP ring. FlgD is necessary for hook formation, but not for LP-ring formation. A revised pathway of flagellar assembly is proposed based on these and other results.  相似文献   

15.
A R Zuberi  C Ying  D S Bischoff  G W Ordal 《Gene》1991,101(1):23-31
The nucleotide sequence of five genes from the major Bacillus subtilis chemotaxis locus has been determined. Four of these genes encode proteins that are homologous to the Salmonella typhimurium FlgB, FlgC, FlgG and FliF proteins. One gene encodes a protein that is homologous to the Escherichia coli FliE protein. The data from S. typhimurium and E. coli suggest that all of these proteins form part of the hook-basal body (HBB) complex of the bacterial flagella. The FlgB, FlgC and FlgG proteins are components of the proximal and distal rods. The FliF protein forms the M-ring that anchors the rod assembly to the membrane. The role of the FliE protein within the HBB complex has not yet been determined. The similarity between the B. subtilis and S. typhimurium proteins suggests that the structure of the M-ring and the rod may be similar in the two species. However, we observed some differences in size and amino acid composition between some of the corresponding homologues that suggest the basal body proteins may be organized slightly differently within B. subtilis.  相似文献   

16.
17.
《Gene》1997,189(1):135-137
We report the DNA sequence of 7205 bp of the Agrobacterium tumefaciens chromosome. This contains a putative operon encoding homologues of the flagellar rod and associated proteins FlgBCG and FliE, the L and P ring proteins (FlgHI) a possible flagellum-specific export protein FliP, and two proteins of unknown function, FlgA and FliL. Several of these genes have overlapping stop and start codons. Three non-flagellate Tn5-induced mutations map to this operon: fla-11 to the first gene, encoding the rod protein FlgB; fla-15 to flgA; and fla-12 to fliL. A site-specific mutation introduced into the final gene in this cluster, fliP, also resulted in a non-flagellate phenotype. This indicates that the operon is expressed, and that at least FlgB, FlgA, FliL and FliP are required for flagellar assembly in A. tumefaciens. The bulk of this operon is conserved in the same order in Rhizobium meliloti.  相似文献   

18.
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. ‘Candidatus Liberibacter asiaticus’ (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.  相似文献   

19.
The motile bacterium Vibrio fischeri is the specific bacterial symbiont of the Hawaiian squid Euprymna scolopes. Because motility is essential for initiating colonization, we have begun to identify stage-specific motility requirements by creating flagellar mutants that have symbiotic defects. V. fischeri has six flagellin genes that are uniquely arranged in two chromosomal loci, flaABCDE and flaF. With the exception of the flaA product, the predicted gene products are more similar to each other than to flagellins of other Vibrio species. Immunoblot analysis indicated that only five of the six predicted proteins were present in purified flagella, suggesting that one protein, FlaF, is unique with respect to either its regulation or its function. We created mutations in two genes, flaA and flaC. Compared to a flaC mutant, which has wild-type flagellation, a strain having a mutation in the flaA gene has fewer flagella per cell and exhibits a 60% decrease in its rate of migration in soft agar. During induction of light organ symbiosis, colonization by the flaA mutant is impaired, and this mutant is severely outcompeted when it is presented to the animal as a mixed inoculum with the wild-type strain. Furthermore, flaA mutant cells are preferentially expelled from the animal, suggesting either that FlaA plays a role in adhesion or that normal motility is an advantage for retention within the host. Taken together, these results show that the flagellum of V. fischeri is a complex structure consisting of multiple flagellin subunits, including FlaA, which is essential both for normal flagellation and for motility, as well as for effective symbiotic colonization.  相似文献   

20.
The Salmonella flagellar secretion apparatus is a member of the type III secretion (T3S) family of export systems in bacteria. After completion of the flagellar motor structure, the hook-basal body (HBB), the flagellar T3S system undergoes a switch from early to late substrate secretion, which results in the expression and assembly of the external, filament propeller-like structure. In order to characterize early substrate secretion-signals in the flagellar T3S system, the FlgB, and FlgC components of the flagellar rod, which acts as the drive-shaft within the HBB, were subject to deletion mutagenesis to identify regions of these proteins that were important for secretion. The β-lactamase protein lacking its Sec-dependent secretion signal (Bla) was fused to the C-terminus of FlgB and FlgC and used as a reporter to select for and quantify the secretion of FlgB and FlgC into the periplasm. Secretion of Bla into the periplasm confers resistance to ampicillin. In-frame deletions of amino acids 9 through 18 and amino acids 39 through 58 of FlgB decreased FlgB secretion levels while deleting amino acid 6 through 14 diminished FlgC secretion levels. Further PCR-directed mutagenesis indicated that amino acid F45 of FlgB was critical for secretion. Single amino acid mutagenesis revealed that all amino acid substitutions at F45 of FlgB position impaired rod assembly, which was due to a defect of FlgB secretion. An equivalent F49 position in FlgC was essential for assembly but not for secretion. This study also revealed that a hydrophobic patch in the cleaved C-terminal domain of FlhB is critical for recognition of FlgB at F45.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号