首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac mammalian target of rapamycin (mTOR) is necessary and sufficient to prevent cardiac dysfunction in pathological hypertrophy. However, the role of cardiac mTOR in heart failure after ischemic injury remains undefined. To address this question, we used transgenic (Tg) mice with cardiac-specific overexpression of mTOR (mTOR-Tg mice) to study ischemia-reperfusion (I/R) injury in two animal models: 1) in vivo I/R injury with transient coronary artery ligation and 2) ex vivo I/R injury in Langendorff-perfused hearts with transient global ischemia. At 28 days after I/R, mortality was lower in mTOR-Tg mice than littermate control mice [wild-type (WT) mice]. Echocardiography and MRI demonstrated that global cardiac function in mTOR-Tg mice was preserved, whereas WT mice exhibited significant cardiac dysfunction. Masson's trichrome staining showed that 28 days after I/R, the area of interstitial fibrosis was smaller in mTOR-Tg mice compared with WT mice, suggesting that adverse left ventricular remodeling is inhibited in mTOR-Tg mice. In the ex vivo I/R model, mTOR-Tg hearts demonstrated improved functional recovery compared with WT hearts. Perfusion with Evans blue after ex vivo I/R yielded less staining in mTOR-Tg hearts than WT hearts, indicating that mTOR overexpression inhibited necrosis during I/R injury. Expression of proinflammatory cytokines, including IL-6 and TNF-α, in mTOR-Tg hearts was lower than in WT hearts. Consistent with this, IL-6 in the effluent post-I/R injury was lower in mTOR-Tg hearts than in WT hearts. These findings suggest that cardiac mTOR overexpression in the heart is sufficient to provide substantial cardioprotection against I/R injury and suppress the inflammatory response.  相似文献   

2.
The effects of oxygen-derived radical scavengers (ODRS) on the heart was investigated during the calcium paradox. Perfusion with Ca2+-free medium caused cell separation at the intercalated discs and changes in the endothelial cells. Upon Ca2+ reintroduction, a massive cell damage occurred. The cytosolic enzyme, creatine phosphokinase (CPK), was released in large amounts (p less than 0.001). The tissue adenosine triphosphate (ATP) was reduced to 3.7 mumol/g dry weight from the control value of 21.6 mumol/g dry weight and tissue Ca2+ content was increased threefold. The treatment with superoxide dismutase (SOD) and catalase (CAT) increased percentage of normal cells (62.2%) compared to nontreated Ca2+ paradox group (0.2%) and caused negligible leakage of CPK. Tissue ATP was preserved (p less than 0.03), and Ca2+ content was also reduced in the hearts treated with SOD and CAT (p less than 0.03). The cell membranes and vascular endothelium were well preserved in the hearts treated with SOD and CAT. Boiled SOD and CAT administered were totally ineffective. It is suggested that oxygen-active species may have a role in the Ca2+ paradox injury.  相似文献   

3.
4.
The calcium paradox of the heart   总被引:2,自引:0,他引:2  
  相似文献   

5.
The role of ErbB4 and ErbB2 in the heart of adult mammals is well established. The heart also expresses ErbB1 (the epidermal growth factor (EGF) receptor), but this receptor has received less attention. We studied the effect of EGF on the response of isolated mouse heart to low-flow ischemia and reperfusion. Reducing perfusate flow to 10% for 30 min resulted in an increase in anaerobic metabolism and the leakage of lactate dehydrogenase during reperfusion. In addition, left ventricle +dP/dt and developed pressure were depressed (20–25%) during reperfusion. The addition of EGF 5 min before and throughout the ischemic period prevented the increase in anaerobic metabolism and the leakage of intracellular lactate dehydrogenase during reperfusion. EGF improved both +dP/dt and developed pressure during ischemia and prevented the decrease in dP/dt during reperfusion. To determine whether the effect of EGF on cell integrity depends on its effect on contractility, we studied nonbeating isolated myocytes. In these cells, anoxia and reoxygenation reduced cell viability by nearly 25%. EGF prevented such a decrease. Our results indicate that, like ErbB4 and ErbB2, ErbB1 also has an important role in the heart of adult animals.  相似文献   

6.
The protective effects of various divalent cations against the irreversible damage of myocardium, a phenomenon termed the Ca2+-paradox, were examined in the isolated perfused pigeon heart. All cations examined were added at a concentration of 200 mol l–1 in the calcium-free medium. In hearts perfused with low calcium, upon normal calcium repletion, the maximal recovery of the contractile tension (in the 2nd minute) was approximately 115% and the recovery obtained at the end of reperfusion was 81.5% (compared to the equilibration period value). From the other divalent cations examined, the presence of cobalt, nickel, manganese or barium during calcium depletion powerfully protected the pigeon heart. Upon calcium repletion, the maximal recovery of contractile tension was approximately 60%, 76.5%, 100% and 85%, the recovery estimated at the end of reperfusion was 40%, 12%, 70% and 53%, and the resting tension estimated at the end of reperfusion was 2.69±0.18 g, 6.40±0.50 g, 1.20±0.10 g and 1.90±0.10 g for cobalt, nickel, manganese and barium, respectively. On the contrary, strontium exerted no protective effects. The protective effects were also indicated by reduced total protein and lactate dehydrogenase activity release into the effluent perfusate and maintenance of electrical activity. The effectiveness of the added divalent cations (with the exception of strontium) showed a strong dependence upon their ionic radius. The most potent inhibitors of this phenomenon in the pigeon heart were the divalent cations having an ionic radius closer to the ionic radius of calcium. These results are discussed in terms of the possible mechanisms involved in the protective effects of these cations.Communicated by: G. Heldmaier  相似文献   

7.
The aim of the study was to find out whether administration of selenium (Se) will protect the immature heart against ischemia/reperfusion. The control pregnant rats were fed laboratory diet (0.237 mg Se/kg diet); experimental rats received 2 ppm Na2SeO3 in the drinking water from the first day of pregnancy until day 10 post partum. The concentration of Se in the serum and heart tissue was determined by activation analysis, the serum concentration of NO by chemiluminescence, cardiac concentration of lipofuscin-like pigment by fluorescence analysis. The 10 day-old hearts were perfused (Langendorff); recovery of developed force (DF) was measured after 40 min of global ischemia. In acute experiments, 10 day-old hearts were perfused with selenium (75 nmol/l) before or after global ischemia. Sensitivity to isoproterenol (ISO, pD50) was assessed as a response of DF to increasing cumulative dose. Se supplementation elevated serum concentration of Se by 16%. Se increased ischemic tolerance (recovery of DF, 32.28 ± 2.37 vs. 41.82 ± 2.91%, P < 0.05). Similar results were obtained after acute administration of Se during post-ischemic reperfusion (32.28 ± 2.37 vs. 49.73 ± 4.40%, P < 0.01). The pre-ischemic treatment, however, attenuated the recovery (23.08 ± 3.04 vs. 32.28 ± 2.37%, P < 0.05). Moreover, Se supplementation increased the sensitivity to the inotropic effect of ISO, decreased cardiac concentration of lipofuscin-like pigment and serum concentration of NO. Our results suggest that Se protects the immature heart against ischemia/reperfusion injury. It seems therefore, that ROS may affect the function of the neonatal heart, similarly as in adults.  相似文献   

8.
Bcl-xL gene transfer protects the heart against ischemia/reperfusion injury   总被引:6,自引:0,他引:6  
Ischemia and reperfusion (I/R) injury causes the progression of cardiac dysfunction. The prevention of cardiomyocyte-loss due to I/R injury is important for the treatment of heart failure. Therefore, we employed antiapoptotic Bcl-xL protein to prevent I/R injury in the heart and evaluated the cardioprotective effect of Bcl-xL transduction by adenoviral vector (Adv) after I/R injury. Adv with Bcl-xL gene was injected in the rat heart 4 days prior to I/R. The prevention of cardiac performance-loss and the reduction of cardiac apoptosis, after 30min ischemia and 30min reperfusion of global I/R, were demonstrated in the heart with adenoviral Bcl-xL transduction. Also, significant reductions of the infarct size and serum creatine kinase levels were observed in the heart transduced with Bcl-xL gene compared with control after 30min ischemia and 24h reperfusion of the left anterior coronary artery. Thus, Bcl-xL may serve as a potential therapeutic tool for cardioprotection.  相似文献   

9.
The effect of adenosine on the calcium paradox in the isolated frog heart was studied. Addition of adenosine during calcium depletion protected the frog heart against a calcium paradox. This protective effect was indicated by reduced protein and creatine kinase release, maintenance of electrical activity, and recovery of mechanical activity during reperfusion. Tissue calcium determination results showed that adenosine protected frog myocardial cells by reducing the massive calcium influx during reperfusion possibly through an action on calcium channels. Adenosine exerted its action in a dose-dependent manner; a concentration of 10 microM adenosine provided maximum protection of myocardial cells against the calcium paradox damage. Higher concentrations of adenosine produced side effects on both electrical and mechanical activity. These results are discussed in terms of the possible mechanism involved in the protective effect of adenosine.  相似文献   

10.
AMPK activation during ischemia helps the myocardium to cope with the deficit of energy production. As AMPK activity is considered to be impaired in diabetes, we hypothesized that enhancing AMPK activation during ischemia above physiological levels would protect the ischemic diabetic heart through AMPK activation and subsequent inhibition of mitochondrial permeability transition pore (mPTP) opening. Isolated perfused hearts from normoglycemic Wistar or diabetic Goto-Kakizaki (GK) rats (n ≥ 6/group) were subjected to 35 min of ischemia in the presence of 10, 20, and 40 μM of A-769662, a known activator of AMPK, followed by 120 min of reperfusion with normal buffer. Myocardial infarction and AMPK phosphorylation were assessed. The effect of A-769662 on mPTP opening in adult cardiomyocytes isolated from both strains was also determined. A-769662 at 20 μM reduced infarct size in both Wistar (30.5 ± 2.7 vs. 51.8 ± 3.9% vehicle; P < 0.001) and GK hearts (22.7 ± 3.0 vs. 48.5 ± 4.7% vehicle; P < 0.001). This protection was accompanied by a significant increase in AMPK and GSK-3β phosphorylation. In addition, A-769662 significantly inhibited mPTP opening in both Wistar and GK cardiomyocytes subjected to oxidative stress. We demonstrate that AMPK activation during ischemia via A-769662 reduces myocardial infarct size in both the nondiabetic and diabetic rat heart. Furthermore, this cardioprotective effect appears to be mediated through inhibition of mPTP opening. Our findings suggest that improving AMPK activation during ischemia can be another mechanism for protecting the ischemic heart.  相似文献   

11.
Xie Y  Zhu WZ  Zhu Y  Chen L  Zhou ZN  Yang HT 《Life sciences》2004,76(5):559-572
Adaptation to intermittent high altitude (IHA) hypoxia can protect the heart against ischemia-reperfusion injury. In view of the fact that both Ca2+ paradox and ischemia-reperfusion injury are associated with the intracellular Ca2+ overload, we tested the hypothesis that IHA hypoxia may protect hearts against Ca2+ paradox-induced lethal injury if its cardioprotection bases on preventing the development of intracellular Ca2+ overload. Langendorff-perfused hearts from normoxic and IHA hypoxic rats were subjected to Ca2+ paradox (5 min of Ca2+ depletion followed by 30 min of Ca2+ repletion) and the functional, biochemical and pathological changes were investigated. The Ca2+ paradox incapacitated the contractility of the normoxic hearts, whereas the IHA hypoxic hearts significantly preserved contractile activity. Furthermore, the normoxic hearts subjected to Ca2+ paradox exhibited a marked reduction in coronary flow, increase in lactate dehydrogenase release, and severe myocyte damage. In contrast, these changes were significantly prevented in IHA hypoxic hearts. We, then, tested and confirmed our hypothesis that the protective mechanisms are mediated by mitochondria ATP-sensitive potassium channels (mitoKATP) and Ca2+/calmodulin-dependent protein kinase II (CaMKII), as the protective effect of IHA hypoxia was abolished by 5-hydroxydecanoate, a selective mitoKATP blocker, and significantly attenuated by KN-93, a CaMKII inhibitor. In conclusion, our studies offer for the first time that IHA hypoxia confers cardioprotection against the lethal injury of Ca2+ paradox and give biochemical evidence for the protective mechanism of IHA hypoxia. We propose that researches in this area may lead a preventive regimen against myocardial injury associated with Ca2+ overload.  相似文献   

12.
Ghrelin, the endogenous ligand of growth hormone secretagogue receptor (GHS-R), is a cardioprotective peptide. In our previous work, we have revealed that ghrelin could protect heart against ischemia/reperfusion (I/R) injury by inhibiting endoplasmic reticulum stress (ERS), which contributes to many heart diseases. In current study, using both in vivo and in vitro models, we investigated how ghrelin inhibits myocardial ERS. In the in vivo rat heart injury model induced by isoproterenol (ISO), we found that exogenous ghrelin could alleviate heart dysfunction, reduce myocardial injury and apoptosis and inhibit the excessive myocardial ERS induced by ISO. More importantly, the activation of AMP-activated protein kinase (AMPK) was observed. To explore the role of AMPK activation in ERS inhibition by ghrelin, we set up two in vitro ERS models by exposing cultured rat cardiomyocytes to tunicamycin(Tm) or dithiothreitol (DTT). In both models, compared with Tm or DTT treatment alone, pre-incubation cardiomyocytes with ghrelin significantly activated AMPK, reversed the upregulation of the ERS markers, C/EBP-homologous protein (CHOP) and cleaved caspase-12, and reduced apoptosis of cardiomyocytes. Further, we found that the ERS inhibitory and anti-apoptotic actions induced by ghrelin were blocked by an AMPK inhibitor. To investigate how ghrelin activates AMPK, selective antagonist of GHS-R1a and inhibitor of Ca2+/Calmodulin-dependent protein kinase kinase (CaMKK) were added, respectively, before ghrelin pre-incubation, and we found that AMPK activation was prevented and the ERS inhibitory and anti-apoptotic actions of ghrelin were blocked. In conclusion, ghrelin could protect heart against ERS-induced injury and apoptosis, at least partially through a GHS-R1a/CaMKK/AMPK pathway.  相似文献   

13.
The hormone erythropoietin (EPO) has been demonstrated to have cardioprotective properties. The present study investigates the role of EPO to prevent heart failure following cancer treatment with doxorubicin [adriamycin (AD)]. Male Wistar rats (150 ± 10 g) were treated with saline (vehicle control group); with EPO, subcutaneously at 1,000 IU/kg body wt, three times per week for 4 wk (EPO group); with adriamycin, intraperitoneally at 2.5 mg/kg body wt, three times per week for 2 wk (AD group); and with adriamycin and EPO (EPO-AD group). Echocardiographic measurements showed that EPO-AD treatment prevented the AD-induced decline in cardiac function. Each of the hearts was then exposed to ischemia and reperfusion during Langendorff perfusion. The percentage of recovery after ischemia-reperfusion was significantly greater in EPO-AD than the AD-treated group for left ventricular developed pressure, maximal increase in pressure, and rate pressure product. The level of oxidative stress was significantly higher in AD (5 μM for 24 h)-exposed isolated cardiomyocytes; EPO (5 U/ml for 48 h) treatment prevented this. EPO treatment also decreased AD-induced cardiomyocyte apoptosis, which was associated with the decrease in the Bax-to-Bcl2 ratio and caspase-3 activation. Immunostaining of myocardial tissue for CD31 showed a significant decrease in the number of capillaries in AD-treated animals. EPO-AD treatment restored the number of capillaries. In conclusion, EPO treatment effectively prevented AD-induced heart failure. The protective effect of EPO was associated with a decreased level of oxidative stress and apoptosis in cardiomyocytes as well as improved myocardial angiogenesis.  相似文献   

14.
Ischemia-reperfusion (I/R) injury is a commonly encountered clinical problem in liver surgery and transplantation. The pathogenesis of I/R injury is multifactorial, but mitochondrial Ca(2+) overload plays a central role. We have previously defined a novel pathway for mitochondrial Ca(2+) handling and now further characterize this pathway and investigate a novel Ca(2+)-channel inhibitor, 2-aminoethoxydiphenyl borate (2-APB), for preventing hepatic I/R injury. The effect of 2-APB on cellular and mitochondrial Ca(2+) uptake was evaluated in vitro by using (45)Ca(2+). Subsequently, 2-APB (2 mg/kg) or vehicle was injected into the portal vein of anesthetized rats either before or following 1 h of inflow occlusion to 70% of the liver. After 3 h of reperfusion, liver injury was assessed enzymatically and histologically. Hep G2 cells transfected with green fluorescent protein-tagged cytochrome c were used to evaluate mitochondrial permeability. 2-APB dose-dependently blocked Ca(2+) uptake in isolated liver mitochondria and reduced cellular Ca(2+) accumulation in Hep G2 cells. In vivo I/R increased liver enzymes 10-fold, and 2-APB prevented this when administered pre- or postischemia. 2-APB significantly reduced cellular damage determined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining of liver tissue. In vitro I/R caused a dissociation between cytochrome c and mitochondria in Hep G2 cells that was prevented by administration of 2-APB. These data further establish the role of cellular Ca(2+) uptake and subsequent mitochondrial Ca(2+) overload in I/R injury and identify 2-APB as a novel pharmacological inhibitor of liver I/R injury even when administered following a prolonged ischemic insult.  相似文献   

15.
16.
Nicotinic acid (niacin) has been shown to decrease myocyte injury. Because interventions that lower the cytosolic NADH/NAD(+) ratio improve glycolysis and limit infarct size, we hypothesized that 1) niacin, as a precursor of NAD(+), would lower the NADH/NAD(+) ratio, increase glycolysis, and limit ischemic injury and 2) these cardioprotective benefits of niacin would be limited in conditions that block lactate removal. Isolated rat hearts were perfused without (Ctl) or with 1 microM niacin (Nia) and subjected to 30 min of low-flow ischemia (10% of baseline flow, LF) and reperfusion. To examine the effects of limiting lactate efflux, experiments were performed with 1) Ctl and Nia groups subjected to zero-flow ischemia and 2) the Nia group treated with the lactate-H(+) cotransport inhibitor alpha-cyano-4-hydroxycinnamate under LF conditions. Measured variables included ATP, pH, cardiac function, tissue lactate-to-pyruvate ratio (reflecting NADH/NAD(+)), lactate efflux rate, and creatine kinase release. The lactate-to-pyruvate ratio was reduced by more than twofold in Nia-LF hearts during baseline and ischemic conditions (P < 0.001 and P < 0.01, respectively), with concurrent lower creatine kinase release than Ctl hearts (P < 0.05). Nia-LF hearts had significantly greater lactate release during ischemia (P < 0.05 vs. Ctl hearts) as well as higher functional recovery and a relative preservation of high-energy phosphates. Inhibiting lactate efflux with alpha-cyano-4-hydroxycinnamate and blocking lactate washout with zero flow negated some of the beneficial effects of niacin. During LF, niacin lowered the cytosolic redox state and increased lactate efflux, consistent with redox regulation of glycolysis. Niacin significantly improved functional and metabolic parameters under these conditions, providing additional rationale for use of niacin as a therapeutic agent in patients with ischemic heart disease.  相似文献   

17.
It has been demonstrated that the anti-oxidative and cardioprotective effects of melatonin are, at least in part, mediated by its membrane receptors. However, the direct downstream signaling remains unknown. We previously found that melatonin ameliorated myocardial ischemia-reperfusion (MI/R) injury in diabetic animals, although the underlying mechanisms are also incompletely understood. This study was designed to determine the role of melatonin membrane receptors in melatonin's cardioprotective actions against diabetic MI/R injury with a focus on cGMP and its downstream effector PKG. Streptozotocin-induced diabetic Sprague-Dawley rats and high-glucose medium-incubated H9c2 cardiomyoblasts were utilized to determine the effects of melatonin against MI/R injury. Melatonin treatment preserved cardiac function and reduced oxidative damage and apoptosis. Additionally, melatonin increased intracellular cGMP level, PKGIα expression, p-VASP/VASP ratio and further modulated myocardial Nrf-2-HO-1 and MAPK signaling. However, these effects were blunted by KT5823 (a selective inhibitor of PKG) or PKGIα siRNA except that intracellular cGMP level did not changed significantly. Additionally, our in vitro study showed that luzindole (a nonselective melatonin membrane receptor antagonist) or 4P–PDOT (a selective MT2 receptor antagonist) not only blocked the cytoprotective effect of melatonin, but also attenuated the stimulatory effect of melatonin on cGMP-PKGIα signaling and its modulatory effect on Nrf-2-HO-1 and MAPK signaling. This study showed that melatonin ameliorated diabetic MI/R injury by modulating Nrf-2-HO-1 and MAPK signaling, thus reducing myocardial apoptosis and oxidative stress and preserving cardiac function. Importantly, melatonin membrane receptors (especially MT2 receptor)-dependent cGMP-PKGIα signaling played a critical role in this process.  相似文献   

18.
The effects of quinacrine (QA) on heat-induced neuronal injury have been explored, with the intention of understanding the mechanisms of QA protection. Primary cultivated striatum neurons from newborn rats were treated with QA 1 h before heat treatment at 43 °C which lasted for another 1 h, and necrosis and apoptosis were detected by Annexin-V-FITC and propidium iodide (PI) double staining. Neuronal apoptosis was determined using terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) techniques. Cell membrane fluidity, activity of cytosolic phospholipase A2 (cPLA2) and the level of arachidonic acid (AA) were also examined. Membrane surface ultrastructure of striatum neurons was investigated by atomic force microscopy (AFM). Results showed that heat treatment induced great striatum neurons death, with many dying neurons undergoing necrosis rather than apoptosis. QA alone had little effect on the survival of striatum neurons, while QA pretreatment before heat treatment decreased necrosis. Heat treatment also resulted in decreased membrane fluidity and increased cPLA2 activity as well as arachidonic acid level; these effects were reversed by QA pretreatment. QA pretreatment also significantly prevented damage to the membrane surface ultrastructure of heat-treated neurons. These results suggest that QA protects striatum neurons against heat-induced neuronal necrosis, and also demonstrate that inhibition of cPLA2 activity and stabilization of membranes may contribute to protective effect of quinacrine.  相似文献   

19.
Mesenteric ischemia-reperfusion (I/R) injury to the intestine is a common and often devastating clinical occurrence for which there are few therapeutic options. alpha-Melanocyte-stimulating hormone (alpha-MSH) is a tridecapeptide released by the pituitary gland and immunocompetent cells that exerts anti-inflammatory actions and abrogates postischemic injury to the kidneys and brainstem of rodents. To test the hypothesis that alpha-MSH would afford similar protection in the postischemic small intestine, we analyzed the effects of this peptide on intestinal transit, histology, myeloperoxidase activity, and nuclear factor-kappaB (NF-kappaB) activation after 45 min of superior mesenteric artery occlusion and 相似文献   

20.
Ding HL  Zhu HF  Dong JW  Zhu WZ  Zhou ZN 《Life sciences》2004,75(21):2587-2603
The aim of this study was to investigate whether and how protein kinase C (PKC) was involved in the protection afforded by intermittent hypoxia (IH) and the subcellular distribution of different PKC isozymes in rat left ventricle. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax in IH hearts were higher than those of normoxic hearts. Chelerythrine (CHE, 5 microM), a PKC antagonist, significantly inhibited the protective effects of IH, but had no influence on normoxic hearts. CHE significantly reduced the effect of IH on the time to maximal contracture (Tmc), but had no significant effect on the amplitude of maximal contracture (Amc) in IH group. In isolated normoxic cardiomyocytes, [Ca(2+)](i), measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion. However, [Ca(2+)](i) kept at normal level during simulated ischemia and reperfusion in isolated IH cardiomyocytes. In normoxic myocytes, [Na(+)](i), indicated as actual concentration undergone calibration, gradually increased during 20 min simulated ischemia and quickly declined to almost the same level as that of pre-ischemia during 30 min simulated reperfusion. However, in IH myocytes, [Na(+)](i) increased to a level lower than the corresponding of normoxic myocytes during simulated ischemia and gradually reduced to the similar level as that of normoxic myocytes after simulated reperfusion. 5 microM CHE greatly increased the levels of [Ca(2+)](i) and [Na(+)](i) during ischemia and reperfusion in normoxic and IH myocytes. In addition, we demonstrated that IH up-regulated the baseline protein expression of particulate fraction of PKC-alpha, epsilon, delta isozymes. There is no significant difference of protein expression of PKC-alpha, epsilon, delta isozymes in cytosolic fraction between IH and normoxic group. The above results suggested that PKC contributed to the cardioprotection afforded by IH against ischemia/reperfusion (I/R) injury; the basal up-regulation of the particulate fraction of PKC-alpha, epsilon, delta isozymes in IH rat hearts and the contribution of PKC to the elimination of calcium and sodium overload might underlie the mechanisms of cardioprotection by IH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号