首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mutagenesis of Anabaena sp. strain PCC 7120 with a derivative of transposon Tn5 led to the isolation of a mutant strain, P6, in which heterocysts are not formed (A. Ernst, T. Black, Y. Cai, J.-M. Panoff, D. N. Tiwari, and C. P. Wolk, J. Bacteriol. 174:6025-6032, 1992). Reconstruction of the transposon mutation of P6 in the wild-type strain reproduced the phenotype of the original mutant. Analysis by pulsed-field gel electrophoresis localized the transposition at ca. 3.44 Mb on the physical map of the chromosome of wild-type Anabaena sp. The transposon was situated within an open reading frame (ORF), which we denote hetP, whose wild-type form was cloned and also sequenced. The predicted HetP protein was not found to show significant sequence similarity to other proteins. The mutation in strain P6 could be complemented by a clone of a fragment of wild-type DNA that includes hetP and at least one additional ORF 3' from hetP, but not by a clone that includes hetP as its only ORF. The latter clone proved highly toxic. The phenotype of the P6 mutant may, therefore, be due to a polar effect of the insertion of the transposon. Filaments of strain P6 and of the wild-type strain, when bearing the complementing fragment on a pDU1-based plasmid, showed an increased frequency of clustered heterocysts compared with that of the wild-type strain.  相似文献   

3.
4.
The gene devA of the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 encodes a protein with high similarity to ATP-binding cassettes of ABC transporters. Mutant M7 defective in the devA gene is arrested in the development of heterocysts at an early stage and is not able to fix N2 under aerobic conditions. The devA gene is differentially expressed in heterocysts. To gain a better understanding of the structural components of this putative ABC transporter, we determined the complete nucleotide sequence of the entire gene cluster. The two additional genes, named devB and devC , encode proteins with similarities to membrane fusion proteins (DevB) of several ABC exporters and to membrane-spanning proteins (DevC) of ABC transporters in general. Site-directed mutations in each of the three genes resulted in identical phenotypes. Heterocyst-specific glycolipids forming the laminated layer of the envelope were identified in lipid extracts of M7 and in the site-directed mutants. However, transmission electron microscopy revealed unequivocally that the glycolipid layer is missing in mutant M7. Ultrastructural analysis also confirmed a developmental block at an early stage of differentiation. The results of this study suggest that the devBCA operon encodes an exporter of glycolipids or of an enzyme that is necessary for the formation of the laminated layer. The hypothesis is proposed that an intact envelope could be required for further heterocyst differentiation.  相似文献   

5.
The filamentous cyanobacterium Anabaena sp. PCC 7120 fixes dinitrogen facultatively. Upon depletion of combined nitrogen, about 10% of vegetative cells within the filaments differentiate terminally into nitrogen-fixing cells. The heterocyst has been studied as a model system of prokaryotic cell differentiation, with major focus on signal transduction and pattern formation. The fate of heterocyst differentiation is determined at about the eighth hour of induction (point of no return), well before conspicuous morphological or metabolic changes occur. However, little is known about how the initial heterocysts are selected after the induction by nitrogen deprivation. To address this question, we followed the fate of every cells on agar plates after nitrogen deprivation with an interval of 4 h. About 10% of heterocysts were formed without prior division after the start of nitrogen deprivation. The intensity of fluorescence of GFP in the transformants of hetR-gfp increased markedly in the future heterocysts at the fourth hour with respect to other cells. We also noted that the growing filaments consisted of clusters of four consecutive cells that we call quartets. About 75% of initial heterocysts originated from either of the two outer cells of quartets at the start of nitrogen deprivation. These results suggest that the future heterocysts are loosely selected at early times after the start of nitrogen deprivation, before the commitment. Such early candidacy could be explained by different properties of the outer and inner cells of a quartet, but the molecular nature of candidacy remains to be uncovered.  相似文献   

6.
In prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Histidine tag pull-downs were used to address this question. However, the main observation was that FtsZ is a target of proteolysis. Experiments using various cell-free extracts, an unrelated protein, and protein blot analyses further supported the idea that FtsZ is proteolytically cleaved in a specific manner. In addition, we show evidence that both FtsZ termini seem to be equally prone to proteolysis. Taken together, our data suggest the presence of an unknown player in cyanobacterial cell division, opening up the possibility to investigate novel mechanisms to control cell division in Anabaena PCC 7120.  相似文献   

7.
Among organic compounds tested for their ability to support nitrogenase activity in isolated heterocysts of Anabaena sp. strain 7120 under argon, D-erythrose (5 mM) was unique in supporting acetylene reduction at 10 times the control rates. Higher concentrations of D-erythrose exhibited substrate inhibition. At 50 kPa of H2, all concentrations of D-erythrose inhibited H2-supported acetylene reduction. The effects of D-erythrose on nitrogenase activity were explored. Erythrose enhanced 15N2 incorporation by heterocysts, but NADP+ did not enhance erythrose-supported acetylene reduction. H2 protected nitrogenase from O2 inactivation, but erythrose did not; erythrose did not counter protection by H2. Tests with inhibitors of electron transport showed that erythrose-supported acetylene reduction requires electron flow through ferredoxin, a b-type cytochrome, and a 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone-sensitive transfer agent whose electron flow is not mediated through the plastoquinone and Rieske iron protein.  相似文献   

8.
Two operons have been cloned from Anabaena sp. strain PCC 7120 DNA, each of which encodes the three core subunits of distinct mitochondrial-type cytochrome c oxidases. The two operons are only 72 to 85% similar to one another at the nucleotide level in the most conserved subunit. One of these, coxBACII, is induced >20-fold in the middle to late stages of heterocyst differentiation. Analysis of green fluorescent protein reporters indicates that this operon is expressed specifically in proheterocysts and heterocysts. The other operon, coxBACI, is induced only 2.5-fold following nitrogen step-down and is expressed in all cells. Surprisingly, a disruption mutant of coxAII, the gene encoding subunit I of the heterocyst-specific oxidase, grows normally in the absence of combined nitrogen. It is likely that coxBACI and/or two other putative terminal oxidases present in the Anabaena sp. strain PCC 7120 genome are able to compensate for the loss of the heterocyst-specific oxidase in providing ATP for nitrogen fixation and maintaining a low oxygen level in heterocysts.  相似文献   

9.
Heterocysts isolated from Anabaena sp. strain 7120 with lysozyme plus sonication were permeabilized with the cationic detergent cetyltrimethylammonium bromide, and they then exhibited comparable acetylene reduction activity in the light and dark with an ATP-regenerating system plus dithionite. The detergent diminished the effect of H2 in enhancing acetylene reduction.  相似文献   

10.
As an approach towards elucidation of the biochemical regulation of the progression of heterocyst differentiation in Anabaena sp. strain PCC 7120, we have identified proteins that bind to a 150-bp sequence upstream from hepC, a gene that plays a role in the synthesis of heterocyst envelope polysaccharide. Such proteins were purified in four steps from extracts of vegetative cells of Anabaena sp. Two of these proteins (Abp1 and Abp2) are encoded by neighboring genes in the Anabaena sp. chromosome. The genes that encode the third (Abp3) and fourth (Abp4) proteins are situated at two other loci in that chromosome. Insertional mutagenesis of abp2 and abp3 blocked expression of hepC and hepA and prevented heterocyst maturation and aerobic fixation of N(2).  相似文献   

11.
The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 responds to starvation for fixed nitrogen by producing a semiregular pattern of nitrogen-fixing cells called heterocysts. Overexpression of the hetY gene partially suppressed heterocyst formation, resulting in an abnormal heterocyst pattern. Inactivation of hetY increased the time required for heterocyst maturation and caused defects in heterocyst morphology. The 489-bp hetY gene (alr2300), which is adjacent to patS (asl2301), encodes a protein that belongs to a conserved family of bacterial hypothetical proteins that contain an ATP-binding motif.  相似文献   

12.
13.
Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [gamma-32P]ATP but not [alpha-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density.  相似文献   

14.
15.
16.
Glucose-6-phosphate dehydrogenase (G6PDH) was isolated from heterocysts and vegetative cells of Anabaena sp. strain PCC 7120. Both enzyme preparations proved to be more active in their oxidized than in their reduced forms. At least one protein with thioredoxin activity was found in Anabaena sp. which, if reduced with dithiothreitol, deactivated the G6PDH preparations. The deactivated heterocyst G6PDH could be reactivated neither by O2 nor by oxidized thioredoxin. Reactivation of the enzyme was, however, achieved by oxidized glutathione or H2O2. The active form of Anabaena G6PDH was readily deactivated by heterologous thioredoxin(s). The Anabaena thioredoxin(s) modulated heterologous enzymes.  相似文献   

17.
Growth of prokaryotes at reduced temperature results in the formation of a cold-adapted ribosome through association with de novo synthesized polypeptides. In vitro and in vivo phosphorylation studies combined with affinity purification and mass spectrometry identified that the phosphorylation status of translation elongation factor EF-Tu was altered in response to cold stress in the photosynthetic, Gram-negative cyanobacterium Anabaena sp. strain PCC 7120. In response to a temperature downshift from 30 to 20 degrees C, EF-Tu was rapidly and transiently hyperphosphorylated during the acclimation phase followed by a reduction in phosphorylation below background levels in response to prolonged exposure. EF-Tu was identified as a phosphothreonine protein. Unexpectedly, ribosomal protein S2 was also observed to be a phosphoprotein continuously phosphorylated during cold stress. The phosphorylation status of EF-Tu has previously been associated with translational regulation in other systems, with a reduction in translation elongation occurring in response to phosphorylation. These results provide evidence for a novel mechanism by which translation is initially downregulated in response to cold stress in Anabaena.  相似文献   

18.
A proteomic approach was employed to elucidate the response of an agriculturally important microbe, Anabaena sp. strain PCC7120, to methyl viologen (MV). Exposure to 2 μM MV caused 50% lethality (LD50) within 6 h and modified the cellular levels of several proteins. About 31 proteins increased in abundance and 24 proteins decreased in abundance, while 55 proteins showed only a minor change in abundance. Of these, 103 proteins were identified by MS. Levels of proteins involved in ROS detoxification and chaperoning activities were enhanced but that of crucial proteins involved in light and dark reactions of photosynthesis declined or constitutive. The abundance of proteins involved in carbon and energy biogenesis were altered. The study elaborated the oxidative stress defense mechanism deployed by Anabaena, identified carbon metabolism and energy biogenesis as possible major targets of MV sensitivity, and suggested potential biotechnological interventions for improved stress tolerance in Anabaena 7120.  相似文献   

19.
Wu X  Liu D  Lee MH  Golden JW 《Journal of bacteriology》2004,186(19):6422-6429
The patS gene encodes a small peptide that is required for normal heterocyst pattern formation in the cyanobacterium Anabaena sp. strain PCC 7120. PatS is proposed to control the heterocyst pattern by lateral inhibition. patS minigenes were constructed and expressed by different developmentally regulated promoters to gain further insight into PatS signaling. patS minigenes patS4 to patS8 encode PatS C-terminal 4 (GSGR) to 8 (CDERGSGR) oligopeptides. When expressed by P(petE), P(patS), or P(rbcL) promoters, patS5 to patS8 inhibited heterocyst formation but patS4 did not. In contrast to the full-length patS gene, P(hepA)-patS5 failed to restore a wild-type pattern in a patS null mutant, indicating that PatS-5 cannot function in cell-to-cell signaling if it is expressed in proheterocysts. To establish the location of the PatS receptor, PatS-5 was confined within the cytoplasm as a gfp-patS5 fusion. The green fluorescent protein GFP-PatS-5 fusion protein inhibited heterocyst formation. Similarly, full-length PatS with a C-terminal hexahistidine tag inhibited heterocyst formation. These data indicate that the PatS receptor is located in the cytoplasm, which is consistent with recently published data indicating that HetR is a PatS target. We speculated that overexpression of other Anabaena strain PCC 7120 RGSGR-encoding genes might show heterocyst inhibition activity. In addition to patS and hetN, open reading frame (ORF) all3290 and an unannotated ORF, orf77, encode an RGSGR motif. Overexpression of all3290 and orf77 under the control of the petE promoter inhibited heterocyst formation, indicating that the RGSGR motif can inhibit heterocyst development in a variety of contexts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号