首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.  相似文献   

2.
The vacuolar H+-ATPase (V-ATPase) is a multimeric enzyme complex that acidifies organelles of the vacuolar system in eukaryotic cells. Proteins that interact with the V-ATPase may play an important role in controlling the intracellular localization and activity of the proton pump. The neuroendocrine-enriched V-ATPase accessory subunit Ac45 may represent such a protein as it has been shown to interact with the membrane sector of the V-ATPase in only a subset of organelles. Here, we examined the fate of newly synthesized Ac45 in the secretory pathway of a neuroendocrine cell. A major portion of intact approximately 46-kDa Ac45 was found to be N-linked glycosylated to approximately 62 kDa and a minor fraction to approximately 64 kDa. Trimming of the N-linked glycans gave rise to glycosylated Ac45-forms of approximately 61 and approximately 63 kDa that are cleaved to a C-terminal fragment of 42-44 kDa (the deglycosylated form is approximately 23 kDa), and a previously not detected approximately 22-kDa N-terminal cleavage fragment (the deglycosylated form is approximately 20 kDa). Degradation of the N-terminal fragment is rapid, does not occur in lysosomes and is inhibited by brefeldin A. Both the N- and C-terminal fragment pass the medial Golgi, as they become partially endoglycosidase H resistant. The Ac45 cleavage event is a relatively slow process (half-life of intact Ac45 is 4-6 h) and takes place in the early secretory pathway, as it is not affected by brefeldin A and monensin. Tunicamycin inhibited N-linked glycosylation of Ac45 and interfered with the cleavage process, suggesting that Ac45 needs proper folding for the cleavage to occur. Together, our results indicate that Ac45 folding and cleavage occur slowly and early in the secretory pathway, and that the cleavage event may be linked to V-ATPase activation.  相似文献   

3.
4.
The 26-kDa bcl-2 gene product inhibits apoptosis and cell proliferation. Cleavage of Bcl-2 into a 22-kDa fragment inactivates its anti-apoptotic activity and is a key event in apoptosis. Here, and in recent work, we describe massive 19-kDa Bcl-2 immunoreactivity in non-apoptotic cells, suggesting a link with viability rather than cell death. Loss of 19 kDa Bcl-2 in adriamycin-induced apoptotic cells underlines this. G2/M-phase accumulation of cells by nocodazole-treatment also results in loss of 19 kDa Bcl-2. Next to its well-documented cytoplasmic localization, a substantial pool of Bcl-2 resides in nuclei. Hampered nuclear localization of Bcl-2 leads to a loss of cell cycle repression. This has led us to point at a pivotal role for nuclear Bcl-2 in cellular proliferation. In this report, cellular fractionation of bcl-2 transfected cells in various phases of the cell cycle reveals a constitutive cytoplasmic pool of 19 kDa Bcl-2. Nuclear 19-kDa Bcl-2 immunoreactivity is far more pronounced in rapidly dividing nuclei compared with more quiescent nuclear fractions. This implicates that ongoing cell proliferation involves cleavage of nuclear Bcl-2 with a 19-kDa fragment.  相似文献   

5.
Gao C  Yu CK  Qu S  San MW  Li KY  Lo SW  Jiang L 《The Plant cell》2012,24(5):2086-2104
Endomembrane proteins (EMPs), belonging to the evolutionarily conserved transmembrane nine superfamily in yeast and mammalian cells, are characterized by the presence of a large lumenal N terminus, nine transmembrane domains, and a short cytoplasmic tail. The Arabidopsis thaliana genome contains 12 EMP members (EMP1 to EMP12), but little is known about their protein subcellular localization and function. Here, we studied the subcellular localization and targeting mechanism of EMP12 in Arabidopsis and demonstrated that (1) both endogenous EMP12 (detected by EMP12 antibodies) and green fluorescent protein (GFP)-EMP12 fusion localized to the Golgi apparatus in transgenic Arabidopsis plants; (2) GFP fusion at the C terminus of EMP12 caused mislocalization of EMP12-GFP to reach post-Golgi compartments and vacuoles for degradation in Arabidopsis cells; (3) the EMP12 cytoplasmic tail contained dual sorting signals (i.e., an endoplasmic reticulum export motif and a Golgi retention signal that interacted with COPII and COPI subunits, respectively); and (4) the Golgi retention motif of EMP12 retained several post-Golgi membrane proteins within the Golgi apparatus in gain-of-function analysis. These sorting signals are highly conserved in all plant EMP isoforms and, thus, likely represent a general mechanism for EMP targeting in plant cells.  相似文献   

6.
Secretases catalyze the production of important proteolytic products of the amyloid precursor protein. We expressed a fusion protein that contained horseradish peroxidase, fragment 590-695 of amyloid precursor protein, and c-myc and polyhistidine tags in Pichia pastoris. It secreted a 50-kDa N-terminal fragment; a 15-kDa C-terminal fragment accumulated in cells. The N-terminal fragment exhibited peroxidase activity and reacted with antibodies specific for peptides within the sequences -2 to 15 and 21-37 of beta-amyloid peptide. The C-terminal fragment reacted with antibodies that recognize the sequences 649-664 and 676-695 of amyloid precursor protein and the C-terminal c-myc tag. To locate the cut site, the C-terminal fragment was metabolically labeled with either [(35)S]Met or [(3)H]Lys and radiosequenced. A major component, derived from a cleavage at Gly(25)-Ser(26) of beta-amyloid, was detected. Results suggest a predominant atypical cleavage, like that observed in Down Syndrome fibroblasts, occurs between the alpha- and gamma-sites.  相似文献   

7.
The transmembrane (TM) envelope protein of lentiviruses, including equine infectious anemia virus (EIAV), is significantly larger than that of other retroviruses and may extend in the C-terminal direction 100 to 200 amino acids beyond the TM domain. This size difference suggests a lentivirus-specific function for the long C-terminal extension. We have investigated the synthesis and processing of the EIAV TM protein by immune precipitation and immunoblotting experiments, by using several envelope-specific peptide antisera. We show that the TM protein in EIAV particles is cleaved by proteolysis to an N-terminal glycosylated 32- to 35-kilodalton (kDa) segment and a C-terminal nonglycosylated 20-kDa segment. The 20-kDa fragment was isolated from virus fractionated by high-pressure liquid chromatography, and its N-terminal amino acid sequence was determined for 13 residues. Together with the known nucleotide sequence, this fixes the cleavage site at a His-Leu bond located 240 amino acids from the N terminus of the TM protein. Since the 32- to 35-kDa fragment and the 20-kDa fragment are not detectable in infected cells, we assume that cleavage occurs in the virus particle and that the viral protease may be responsible. We have also found that some cells producing a tissue-culture-adapted strain of EIAV synthesize a truncated envelope precursor polyprotein. The point of truncation differs slightly in the two cases we have observed but lies just downstream from the membrane-spanning domain, close to the cleavage point described above. In one case, virus producing the truncated envelope protein appeared to be much more infectious than virus producing the full-size protein, suggesting that host cell factors can select for virus on the basis of the C-terminal domain of the TM protein.  相似文献   

8.
It is currently under debate whether the mechanism of Golgi retention of different glycosyltransferases is determined by sequences in the transmembrane, luminal, or cytoplasmic domains or a combination of these domains. We have shown that the cytoplasmic domains of alpha1,3-galactosyltransferase (GT) and alpha1,2-fucosyltransferase (FT) are involved in Golgi localization. Here we show that the cytoplasmic tails of GT and FT are sufficient to confer specific Golgi localization. Further, we show that the expression of only the cytoplasmic tail of GT can lead to displacement or inhibition of binding of the whole transferase and that cells expressing the cytoplasmic tail of GT were not able to express full-length GT or its product, Galalpha1,3Gal. Thus, the presence of the cytoplasmic tail prevented the localization and function of full-length GT, suggesting a possible specific Golgi binding site for GT. The effect was not altered by the inclusion of the transmembrane domain. Although the transmembrane domain may act as an anchor, these data show that, for GT, only the cytoplasmic tail is involved in specific localization to the Golgi.  相似文献   

9.
10.
A chromatography fraction, prepared from isolated thylakoids of a fatty acid desaturation mutant (Fad6/desA Colon, two colons Km(r)) of the cyanobacterium Synechocystis 6803, could induce an initial cleavage of the D1 protein in Photosystem II (PSII) particles of Synechocystis 6803 mutant and Synechococcus 7002 wild type as well as in supercomplexes of PSII-light harvesting complex II of spinach. Proteolysis was demonstrated both in darkness and in light as a reduction in the amount of full-length D1 protein or as a production of C-terminal initial degradation fragments. In the Synechocystis mutant, the main degradation fragment was a 10-kDa C-terminal one, indicating an initial cleavage occurring in the cytoplasmic DE-loop of the D1 protein. A protein component of 70-90 kDa isolated from the chromatographic fraction was found to be involved in the production of this 10-kDa fragment. In spinach, only traces of the corresponding fragment were detected, whereas a 24-kDa C-terminal fragment accumulated, indicating an initial cleavage in the lumenal AB-loop of the D1 protein. Also in Synechocystis the 24-kDa fragment was detected as a faint band. An antibody raised against the Arabidopsis DegP2 protease recognized a 35-kDa band in the proteolytically active chromatographic fraction, suggesting the existence of a lumenal protease that may be the homologue DegP of Synechocystis. The identity of the other protease cleaving the D1 protein in the DE-loop exposed on the stromal (cytoplasmic) side of the membrane is discussed.  相似文献   

11.
The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44.  相似文献   

12.
13.
Although most L-type calcium channel alpha(1C) subunits isolated from heart or brain are approximately 190-kDa proteins that lack approximately 50 kDa of the C terminus, the C-terminal domain is present in intact cells. To test the hypothesis that the C terminus is processed but remains functionally associated with the channels, expressed, full-length alpha(1C) subunits were cleaved in vitro by chymotrypsin to generate a 190-kDa C-terminal truncated protein and C-terminal fragments of 30-56 kDa. These hydrophilic C-terminal fragments remained membrane-associated. A C-terminal proline-rich domain (PRD) was identified as the mediator of membrane association. The alpha(1C) PRD bound to SH3 domains in Src, Lyn, Hck, and the channel beta(2) subunit. Mutant alpha(1C) subunits lacking either approximately 50 kDa of the C terminus or the PRD produced increased barium currents through the channels, demonstrating that these domains participate in the previously described (Wei, X., Neely, a., Lacerda, A. E. Olcese, r., Stefani, E., Perez-Reyes, E., and Birnbaumer, L. (1994) J. Biol. Chem. 269, 1635-1640) inhibition of channel function by the C terminus.  相似文献   

14.
15.
CD1e is a membrane-associated protein predominantly detected in the Golgi compartments of immature human dendritic cells. Without transiting through the plasma membrane, it is targeted to lysosomes (Ls) where it remains as a cleaved and soluble form and participates in the processing of glycolipidic antigens. The role of the cytoplasmic tail of CD1e in the control of its intracellular pathway was studied. Experiments with chimeric molecules demonstrated that the cytoplasmic domain determines a cellular pathway that conditions the endosomal cleavage of these molecules. Other experiments showed that the C-terminal half of the cytoplasmic tail mediates the accumulation of CD1e in Golgi compartments. The cytoplasmic domain of CD1e undergoes monoubiquitinations, and its ubiquitination profile is maintained when its N- or C-terminal half is deleted. Replacement of the eight cytoplasmic lysines by arginines results in a marked accumulation of CD1e in trans Golgi network 46+ compartments, its expression on the plasma membrane and a moderate slowing of its transport to Ls. Fusion of this mutated form with ubiquitin abolishes the accumulation of CD1e molecules in the Golgi compartments and restores the kinetics of their transport to Ls. Thus, ubiquitination of CD1e appears to trigger its exit from Golgi compartments and its transport to endosomes. This ubiquitin-dependent pathway may explain several features of the very particular intracellular traffic of CD1e in dendritic cells compared with other CD1 molecules.  相似文献   

16.
A-type lamins are localized at the nuclear envelope and in the nucleoplasm, and are implicated in human diseases called laminopathies. In a yeast two-hybrid screen with lamin C, we identified a novel widely expressed 171-kDa protein that we named Lamin companion 1 (Lco1). Three independent biochemical assays showed direct binding of Lco1 to the C-terminal tail of A-type lamins with an affinity of 700 nM. Lco1 also bound the lamin B1 tail with lower affinity (2 microM). Ectopic Lco1 was found primarily in the nucleoplasm and colocalized with endogenous intranuclear A-type lamins in HeLa cells. Overexpression of prelamin A caused redistribution of ectopic Lco1 to the nuclear rim together with ectopic lamin A, confirming association of Lco1 with lamin A in vivo. Whereas the major C-terminal lamin-binding fragment of Lco1 was cytoplasmic, the N-terminal Lco1 fragment localized in the nucleoplasm upon expression in cells. Furthermore, full-length Lco1 was nuclear in cells lacking A-type lamins, showing that A-type lamins are not required for nuclear targeting of Lco1. We conclude that Lco1 is a novel intranuclear lamin-binding protein. We hypothesize that Lco1 is involved in organizing the internal lamin network and potentially relevant as a laminopathy disease gene or modifier.  相似文献   

17.
Time course experiments of the localization of rat LIMP II expressed in COS cells show that the protein is transported directly from the Golgi complex to lysosomes. Substitution of the tyrosine-lacking carboxyl cytoplasmic tail of LIMP II for the native cytoplasmic tails of the plasma membrane proteins CD36 and CD8 resulted in straight transport of both proteins to lysosomes. The synthetic tyrosine-containing heptapeptide, RGTGVYG, did not replace the natural carboxyl cytoplasmic tail of LIMP II in its ability to transport both CD36 and CD8 to lysosomes, and the two constructs were transported to and expressed at the plasma membrane. Substitution of the cytoplasmic tails of either CD36 or CD8 for the carboxyl cytoplasmic tail of LIMP II resulted in transport of the mutants to the plasma membrane where they underwent endocytosis before accumulating into lysosomes. The results indicate that a motif contained in the tyrosine-lacking carboxyl cytoplasmic tail of LIMP II is sufficient to target proteins directly from the Golgi complex to lysosomes.  相似文献   

18.
Lymphocyte activation gene-3 (LAG-3; CD223) is a CD4-related transmembrane protein that binds to MHC class II molecules. We have recently shown that LAG-3 is required for maximal regulatory T cell function, and that ectopic expression of LAG-3 is sufficient to confer regulatory activity. In this study we show that LAG-3 is cleaved within the D4 transmembrane domain connecting peptide into two fragments that remain membrane associated: a 54-kDa fragment that contains all the extracellular domains and oligomerizes with full-length LAG-3 (70 kDa) on the cell surface via the D1 domain, and a 16-kDa peptide that contains the transmembrane and cytoplasmic domains. This NH(2)-terminal fragment is subsequently released as soluble LAG-3 (sLAG-3), a process that is increased after T cell activation in vitro and in vivo, and is found in the sera of C57BL/6 and RAG-1(-/-) mice. Modulation of LAG-3 cleavage may contribute to the function of this key regulatory T cell protein.  相似文献   

19.
Hu L  Li L  Xie H  Gu Y  Peng T 《PloS one》2011,6(11):e28207
Golgi phosphoprotein 2 (GOLPH2) is a resident Golgi type-II membrane protein upregulated in liver disease. Given that GOLPH2 traffics through endosomes and can be secreted into the circulation, it is a promising serum marker for liver diseases. The structure of GOLPH2 and the functions of its different protein domains are not known. In the current study, we investigated the structural determinants for Golgi localization using a panel of GOLPH2 truncation mutants. The Golgi localization of GOLPH2 was not affected by the deletion of the C-terminal part of the protein. A truncated mutant containing the N-terminal portion (the cytoplasmic tail and transmembrane domain (TMD)) localized to the Golgi. Sequential deletion analysis of the N-terminal indicated that the TMD with a positively charged residue in the cytoplasmic N-terminal tail were sufficient to support Golgi localization. We also showed that both endogenous and secreted GOLPH2 exist as a disulfide-bonded dimer, and the coiled-coil domain was sufficient for dimerization. This structural knowledge is important for the understanding the pathogenic role of GOLPH2 in liver diseases, and the development of GOLPH2-based hepatocellular cancer diagnostic methods.  相似文献   

20.
The translation products of chromosomal DNAs of Pseudomonas aeruginosa encoding phospholipase C (heat-labile hemolysin) have been examined in T7 promoter plasmid vectors and expressed in Escherichia coli cells. A plasmid carrying a 4.7-kilobase (kb) DNA fragment was found to encode the 80-kilodalton (kDa) phospholipase C as well as two more proteins with an apparent molecular mass of 26 and 19 kDa. Expression directed by this DNA fragment with various deletions suggested that the coding region for the two smaller proteins was contained in a 1-kb DNA region. Moreover, the size of both proteins was reduced by the same amount by an internal BglII-BglII DNA deletion, suggesting that they were translated from overlapping genes. Similar results were obtained with another independently cloned 6.1-kb Pseudomonas DNA, which in addition coded for a 31-kDa protein of opposite orientation. The nucleotide sequence of the 1-kb region above revealed an open reading frame with a signal sequence typical of secretory proteins and a potential in-phase internal translation initiation site. Pulse-chase and localization studies in E. coli showed that the 26-kDa protein was a precursor of a secreted periplasmic 23-kDa protein (PlcR1) while the 19-kDa protein (PlcR2) was mostly cytoplasmic. These results indicate the expression of Pseudomonas in-phase overlapping genes in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号