首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:以粪肠球菌为研究对象,探讨粪肠球菌基因srtA(转肽酶A编码基因)、esp(肠球菌表面蛋白)与粪肠球菌生物被膜形成早期的相关性。方法:用逆转录PCR与实时荧光定量PCR方法对生物被膜和浮游菌组细菌srtA、esp两种与生物被膜形成早期相关的基因其表达进行检测,并进行统计学分析。结果:srtA、esp基因与粪肠球生物被膜菌早期形成密切相关。生物被膜菌组srtA、esp表达量分别是浮游菌组的7.9与13.5倍。结论:srtA、esp基因与粪肠球生物被膜菌形成早期密切相关,可能是生物被膜早期形成的上调因子。  相似文献   

2.
Mutation of a single gene, referred to as selA1 in Salmonella typhimurium and as selD in Escherichia coli, results in the inability of these organisms to insert selenium specifically into the selenopolypeptides of formate dehydrogenase and into the 2-selenouridine residues of tRNAs. The mutation does not involve transport of selenite into the cell or reduction of selenite to selenide since both mutant strains synthesize selenocysteine and selenomethionine from added selenite and incorporate these selenoamino acids non-specifically into numerous proteins of the bacterial cells. Complementation of the mutation in S. typhimurium with the selD gene from E. coli indicates functional identity of the selA1 and selD genes. Although the selA1 gene maps at approximately 21 min on the S. typhimurium chromosome and the selD gene at approximately 38 min on the E. coli chromosome, only a single gene in wild-type S. typhimurium hybridized to the E. coli selD gene probe. Transformation of the mutant Salmonella strain with a plasmid bearing the E. coli selD gene restored formate dehydrogenase activity, 75Se incorporation into formate dehydrogenase seleno-polypeptides and [75Se]seleno-tRNA synthesis. Transformation with an additional plasmid carrying an E. coli formate dehydrogenase selenopolypeptide-lacZ gene fusion showed that the selD gene allowed readthrough of the UGA codon and synthesis of beta-galactosidase in the Salmonella mutant.  相似文献   

3.
Self WT 《Journal of bacteriology》2002,184(7):2039-2044
The discovery that two distinct enzyme catalysts, purine hydroxylase (PH) and xanthine dehydrogenase (XDH), are required for the overall conversion of hypoxanthine to uric acid by Clostridium purinolyticum was unexpected. In this reaction sequence, hypoxanthine is hydroxylated to xanthine by PH and then xanthine is hydroxylated to uric acid by XDH. PH and XDH, which contain a labile selenium cofactor in addition to a molybdenum cofactor, flavin adenine dinucleotide, and FeS centers, were purified and partially characterized as reported previously. In the present study, the activities of these two enzymes were measured in cells grown in media containing various concentrations of selenite, molybdate, and various purine substrates. The levels of PH protein in extracts were determined by immunoblot assay. The amount of PH protein, as well as the specific activities of PH and XDH, increased when either selenite or molybdate was added to the culture medium. PH levels were highest in the cells cultured in the presence of either adenine or purine. XDH activity increased dramatically in cells grown with either xanthine or uric acid. The apparent increases in protein levels and activities of PH and XDH in response to selenium, molybdenum, and purine substrates demonstrate that these enzymes are tightly regulated in response to these nutrients.  相似文献   

4.
The CO----methylene blue and CO----dichlorophenol indophenol activities of carbon monoxide oxidase were specifically activated upon aerobic incubation with selenite, whereas the NADH----methylene blue activity was not altered. Fully active enzyme contained selenium, molybdenum, and flavin adenine dinucleotide in a 1:1:1 ratio. Selenium was covalently bound to the protein, probably between the sulfurs of half-cystine residues, and not a constituent of the molybdenum cofactor. The action of selenite was directed to the cytoplasmic species of carbon monoxide oxidase exclusively, whereas the CO----methylene blue activity of the membrane-bound enzyme remained unaffected.  相似文献   

5.
Enterococcus faecalis is a commensal organism of the gastrointestinal tract but can also cause serious opportunistic infections. In addition to high levels of antibiotic resistance, the ability to form biofilms on abiotic surfaces and on in-dwelling devices within the host complicates treatment strategies and successful outcomes of antibiotic therapy. Despite rapid advances made in recent years in understanding the genomics and virulence of this organism, much remains to be learned regarding the host response to enterococcal infections. In this study, we investigated the interaction of RAW264.7 macrophages and JAWS II dendritic cells with biofilm and planktonic E.?faecalis, in vitro. Specifically, we compared phagocytosis, intracellular survival, secretion of proinflammatory cytokines, and the activation and maturation of phagocytes. Our results revealed that both macrophages and dendritic cells phagocytize biofilm mode cells at levels equal to or better than their planktonic counterparts. Internalized biofilm bacteria showed relatively greater survival at 24?h in macrophages than in dendritic cells and led to slightly higher expression of phagocyte activation markers. Macrophages infected with biofilm cells also secreted lower levels of proinflammatory cytokines studied. Overall, these results suggest that biofilm E.?faecalis may be better adapted to overcome host defenses in vivo.  相似文献   

6.
This study compares Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to the selenium and tellurium oxyanions selenite (SeO3(2-)), tellurate (TeO4(2-)), and tellurite (TeO3(2-)). P. aeruginosa planktonic and biofilm cultures reduced the selenium and tellurium oxyanions to orange and black end-products (respectively) and were equally tolerant to killing by these metalloid compounds. S. aureus planktonic cell cultures processed these metalloid oxyanions in a similar way, but the corresponding biofilm cultures did not. S. aureus biofilms were approximately two and five times more susceptible to killing by tellurate and tellurite (respectively) than the corresponding planktonic cultures. Our data indicate that the means of reducing metalloid oxyanions may differ between the physiology displayed in biofilm and planktonic cultures of the same bacterial strain.  相似文献   

7.
Enterococci are major contributors of hospital-acquired infections and have emerged as important reservoirs for the dissemination of antibiotic resistance traits. The ability to form biofilms on medical devices is an important aspect of pathogenesis in the hospital environment. The Enterococcus faecalis Fsr quorum system has been shown to regulate biofilm formation through the production of gelatinase, but the mechanism has been hitherto unknown. Here we show that both gelatinase (GelE) and serine protease (SprE) contribute to biofilm formation by E. faecalis and provide clues to how the activity of these proteases governs this developmental process. Confocal imaging of biofilms suggested that GelE(-) mutants were significantly reduced in biofilm biomass compared to the parental strain, whereas the absence of SprE appeared to accelerate the progression of biofilm development. The phenotype observed in a SprE(-) mutant was linked to an observed increase in autolytic rate compared to the parental strain. Culture supernatant analysis and confocal microscopy confirmed the inability of mutants deficient in GelE to release extracellular DNA (eDNA) in planktonic and biofilm cultures, whereas cells deficient in SprE produced significantly more eDNA as a component of the biofilm matrix. DNase I treatment of E. faecalis biofilms reduced the accumulation of biofilm, implying a critical role for eDNA in biofilm development. In conclusion, our data suggest that the interplay of two secreted and coregulated proteases--GelE and SprE--is responsible for regulating autolysis and the release of high-molecular-weight eDNA, a critical component for the development of E. faecalis biofilms.  相似文献   

8.
9.
Selenium deficiency is a major health problem worldwide for about 1 billion people. Bacterial cells usually possess low tolerance to selenite stress and also low ability to reduce high concentrations of toxic selenite. Here, high tolerance to selenite and selenium bioaccumulation capability were developed in mutated clones of probiotic and starter bacteria including Enterococcus faecium, Bifidobacterium animalis ssp. lactis, Lactobacillus casei and Lactococcus lactis ssp. lactis by food-level strain development process and clone selection. All mutant clones possessed increased glutathione concentration and glutathione reductase activity. The selenite treatment increased further these values in L. casei mutant strain pointing at a different selenite reduction pathway and/or stress response in this organism. Considerable conversion of selenite to cell bound selenium forms with a concomitant high biomass production was detected in E. faecium and B. animalis ssp. lactis cultures. Possible application of these strains as food and feed supplements is under investigation.  相似文献   

10.
A specific dehydrogenase, different from nicotinic acid hydroxylase, was induced during growth of Eubacterium barkeri on xanthine. The protein designated as xanthine dehydrogenase was enriched 39-fold to apparent homogeneity using a three-step purification scheme. It exhibited an NADP-dependent specific activity of 164 micromol xanthine oxidized per min and per mg of protein. In addition it showed an NADPH-dependent oxidase and diaphorase activity. A molecular mass of 530 kDa was determined for the native enzyme and SDS/PAGE revealed three types of subunits with molecular masses of 17.5, 30 and 81 kDa indicating a dodecameric native structure. Molybdopterin was identified as the molybdenum-complexing cofactor using activity reconstitution experiments and fluorescence measurements after KI/I2 oxidation. The molecular mass of the cofactor indicated that it is of the dinucleotide type. The enzyme contained iron, acid-labile sulfur, molybdenum, tungsten, selenium and FAD at molar ratios of 17.5, 18.4, 2.3, 1.1, 0.95 and 2.8 per mol of native enzyme. Xanthine dehydrogenase was inactivated upon incubation with arsenite, cyanide and different purine analogs. Reconstitution experiments of xanthine dehydrogenase activity by addition of selenide and selenite performed with cyanide-inactivated enzyme and with chloramphenicol-treated cells, respectively, indicated that selenium is not attached to the protein in a covalently bound form such as selenocysteine.  相似文献   

11.
AIM: To study the influence of 15 microbial isolates on the prevalence of charge-heterogeneous and charge-homogeneous Enterococcus faecalis strains, all isolated from biliary stents, in mixed-species biofilms. METHODS AND RESULTS: Six Enterococcus faecalis strains were paired with 15 other microbial isolates to form mixed-species biofilms in a microtitre plate assay. Charge-heterogeneous Enterococcus faecalis strains display two subpopulations with different surface charges, expressed as a biomodal zeta potential distribution. It was found that, in general, the prevalence of the charge-heterogeneous, biofilm forming Enterococcus faecalis was reduced in mixed-species biofilms. The prevalence of charge-homogeneous, nonbiofilm-forming Enterococcus faecalis strains was increased only in the presence of Citrobacter freundii BS5126, Stenotrophomonas malthophilia BS937, and Candida lusitaniae BS8256, all of which introduced sizeable charge heterogeneity in the mixed microbial population. CONCLUSIONS: Charge-homogeneous Enterococcus faecalis strains are stimulated to form biofilm only by the presence of another microbial species with a considerably less negative zeta potential, thereby creating a charge-heterogeneous microbial population. SIGNIFICANCE AND IMPACT OF THE STUDY: Enterococcus faecalis is one of the predominant species isolated from mixed-species biofilms in clogged biliary stents. The current study shows how charge-homogeneous Enterococcus faecalis strains form more biofilm in the presence of other microbial species.  相似文献   

12.
C Shao  W Shang  Z Yang  Z Sun  Y Li  J Guo  X Wang  D Zou  S Wang  H Lei  Q Cui  Z Yin  X Li  X Wei  W Liu  X He  Z Jiang  S Du  X Liao  L Huang  Y Wang  J Yuan 《Journal of proteome research》2012,11(9):4465-4475
Bacteria utilize a quorum sensing (QS) system to coordinate gene expression by monitoring the concentration of molecules known as autoinducers (AI). In the present study, we confirmed the presence of a LuxS/AI-2 dependent QS system in vancomycin-resistant Enterococcus faecalis V583. Then, the cellular targets controlled by AI-2 were identified by comparative proteomics analysis in order to elucidate the possible role of AI-2 in E. faecalis. Results demonstrated 15 proteins that are differentially expressed upon the addition of AI-2, including proteins involved in metabolism, translation, energy production and/or conversion, and cell wall biogenesis. Glyceraldehyde-3-phosphate dehydrogenase and malate dehydrogenase associated with carbohydrate metabolism and energy production were up-regulated upon inducing by AI-2. In addition, externally added AI-2 could down-regulate acetyl-coenzyme A carboxylase and ornithine carbamoyltransferase, two key enzyme involved in metabolism. All these data suggest that AI-2 signaling may play a role in the regulation of a number of important metabolic properties of E. faecali. We further investigated the role of AI-2 in biofilm formation by E. faecalis, showing the addition of AI-2 to E. faecalis V583 cultures resulted in increased biofilm formation. Our results provide important clues to the role of a LuxS/AI-2 dependent QS system in vancomycin-resistant E. faecalis.  相似文献   

13.
To study the function of selenoproteins in development and growth we have used a lethal mutation (selD(ptuf)) of the Drosophila homologous selenophosphate synthetase (selD) gene. This enzyme is involved in the selenoprotein biosynthesis. The selD(ptuf) loss-of-function mutation causes aberrant cell proliferation and differentiation patterns in the brain and imaginal discs, as deduced from genetic mosaics, patterns of gene expression and analysis of cell cycle markers. In addition to that, selenium metabolism is also necessary for the ras/MAPKinase signal tansduction pathway. Therefore, the use of Drosophila imaginal discs and brain and in particular the selD(ptuf) mutation, provide an excellent model to investigate the role of selenoproteins in the regulation of cell proliferation, growth and differentiation.  相似文献   

14.

   

Bacterial and Archaeal cells use selenium structurally in selenouridine-modified tRNAs, in proteins translated with selenocysteine, and in the selenium-dependent molybdenum hydroxylases (SDMH). The first two uses both require the selenophosphate synthetase gene, selD. Examining over 500 complete prokaryotic genomes finds selD in exactly two species lacking both the selenocysteine and selenouridine systems, Enterococcus faecalis and Haloarcula marismortui. Surrounding these orphan selD genes, forming bidirectional best hits between species, and detectable by Partial Phylogenetic Profiling vs. selD, are several candidate molybdenum hydroxylase subunits and accessory proteins. We propose that certain accessory proteins, and orphan selD itself, are markers through which new selenium-dependent molybdenum hydroxylases can be found.  相似文献   

15.
The role of selenium and molybdenum in the metabolism of Escherichia coli was explored by growing cells in a simple salts medium and examining the metabolic consequences of altering the concentration of molybdenum and selenium compounds in the medium. The addition of tungstate increased the molybdate deficiency of this medium, as reflected by lowered levels of enzyme systems previously recognized to require compounds of molybdenum and selenium for their formation [formate-dependent oxygen reduction, formate dehydrogenase (FDH) (EC 1.2.2.1), and nitrate reductase (EC 1.9.6.1)]. The requirement for selenium and molybdenum appears to be unique to the enzymes of formate and nitrate metabolism since molybdate- and selenite-deficient medium had no effect on the level of several dehydrogenase and oxidase systems, for which the electron donors were reduced nicotinamide adenine dinucleotide, succinate, d- or l-lactate, and glycerol. In addition, no effect was observed on the growth rate or cell yield with any carbon source tested (glucose, glycerol, dl-lactate, acetate, succinate, and l-malate) when the medium was deficient in molybdenum and selenium. dl-Selenocystine was about as effective as selenite in stimulating the formation of formate dehydrogenase, whereas dl-selenomethionine was only 1% as effective. In aerobic cells, an amount of FDH was formed such that 3,200 or 3,800 moles of formate were oxidized per min per mole of added selenium (added as dl-selenocystine or selenite, respectively).  相似文献   

16.
17.
Esp-independent biofilm formation by Enterococcus faecalis   总被引:12,自引:0,他引:12       下载免费PDF全文
Enterococcus faecalis is a gram-positive opportunistic pathogen known to form biofilms in vitro. In addition, this organism is often isolated from biofilms on the surfaces of various indwelling medical devices. However, the molecular mechanisms regulating biofilm formation in these clinical isolates are largely unknown. Recent work has suggested that a specific cell surface protein (Esp) of E. faecalis is critical for biofilm formation by this organism. However, in the same study, esp-deficient strains of E. faecalis were found to be capable of biofilm formation. To test the hypothesis that Esp is dispensable for biofilm formation by E. faecalis, we used microtiter plate assays and a chemostat-based biofilm fermentor assay to examine biofilm formation by genetically well-defined, non-Esp-expressing strains. Our results demonstrate that in vitro biofilm formation occurs, not only in the absence of esp, but also in the absence of the entire pathogenicity island that harbors the esp coding sequence. Using scanning electron microscopy to evaluate biofilms of E. faecalis OG1RF grown in the fermentor system, biofilm development was observed to progress through multiple stages, including attachment of individual cells to the substratum, microcolony formation, and maturation into complex multilayered structures apparently containing water channels. Microtiter plate biofilm analyses indicated that biofilm formation or maintenance was modulated by environmental conditions. Furthermore, our results demonstrate that expression of a secreted metalloprotease, GelE, enhances biofilm formation by E. faecalis. In summary, E. faecalis forms complex biofilms by a process that is sensitive to environmental conditions and does not require the Esp surface protein.  相似文献   

18.
19.
Aeromonas hydrophila is an opportunistic Gram-negative pathogen that readily attaches to stainless steel to produce a thin biofilm with a complex 3D structure covering 40-50% of the available surface and producing large microcolonies. As A. hydrophila possesses an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system based on the ahyRI locus, the presence of the AhyI protein and C4-HSL within the biofilm phase was first established by Western blot and AHL biosensor analysis respectively. The ability of the A. hydrophila AH-1 N strain to form biofilms in a continuous-flow chamber was compared with isogenic ahyI and ahyR mutants. The ahyI mutant, which cannot produce C4-HSL, failed to form a mature biofilm. In addition, the viable count of biofilm, but not planktonic phase ahyI mutants, was significantly lower that the parent or ahyR mutant. This defect in the differentiation of the ahyI mutant biofilm could be partially restored by the addition of exogenous C4-HSL. A mutation in ahyR increased coverage of the available surface to around 80% with no obvious effect upon biofilm microcolony formation. These data support a role for AHL-dependent quorum sensing in A. hydrophila biofilm development. Exposure of the A. hydrophila AH-1N biofilm to N-(3-oxodecanoyl)homoserine lactone, which inhibits exoprotease production in planktonic cells, however, had no effect on biofilm formation or architecture within the continuous-flow chamber.  相似文献   

20.
Biofilm production is thought to be an important step in many enterococcal infections. In several Gram-positive bacteria, membrane glycolipids have been implicated in biofilm formation. We constructed a non-polar deletion mutant of a putative glucosyltransferase designated biofilm-associated glycolipid synthesis A ( bgsA ) in Enterococcus faecalis 12030. Analysis of major extracted glycolipids by nuclear magnetic resonance spectroscopy revealed that the cell membrane of 12030Δ bgsA was devoid of diglucosyl–diacylglycerol (DGlcDAG), while monoglucosyl–diacylglycerol was overrepresented. The cell walls of 12030Δ bgsA contained longer lipoteichoic acid molecules and were less hydrophobic than wild-type bacteria. Inactivation of bgsA in E. faecalis 12030 and E. faecalis V583 led to an almost complete arrest of biofilm formation on plastic surfaces. Overexpression of bgsA , on the other hand, resulted in increased biofilm production. While initial adherence was not affected, bgsA -deficient bacteria did not accumulate in the growing biofilm. Also, adherence of E. faecalis Δ bgsA to Caco-2 cells was impaired. In a mouse bacteraemia model, E. faecalis 12030Δ bgsA was cleared more rapidly from the bloodstream than the wild-type strain. In summary, BgsA is a glycosyltransferase synthetizing DGlcDAG, a glycolipid and lipoteichoic acid precursor involved in biofilm accumulation, adherence to host cells, and virulence in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号