首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refolding of an integral membrane protein. OmpA of Escherichia coli   总被引:7,自引:0,他引:7  
OmpA is an integral membrane protein from the outer membrane of Escherichia coli. Purified, lipopolysaccharide-free OmpA was denatured by boiling in sodium dodecyl sulfate (SDS). Refolding was then induced by replacement of SDS with the nonionic detergent octylglucoside. The structure of both the denatured and refolded protein were investigated by SDS-gel electrophoresis, protease digestion, Raman and fluorescence spectroscopy. Refolded OmpA could be reconstituted into membranes of the synthetic lipid dimyristoylphosphatidylcholine. Thus, lipopolysaccharide is neither necessary for proper folding of OmpA nor for its insertion into lipid membranes. Based on this result, models for sorting of OmpA into the outer membrane of E. coli are discussed.  相似文献   

2.
Acinetobacter species show high levels of intrinsic resistance to many antibiotics. The major protein species in the outer membrane of Acinetobacter baumannii does not belong to the high-permeability trimeric porin family, which includes Escherichia coli OmpF/OmpC, and instead is a close homolog of E. coli OmpA and Pseudomonas aeruginosa OprF. We characterized the pore-forming function of this OmpA homolog, OmpA(Ab), by a reconstitution assay. OmpA(Ab) produced very low pore-forming activity, about 70-fold lower than that of OmpF and an activity similar to that of E. coli OmpA and P. aeruginosa OprF. The pore size of the OmpA(Ab) channel was similar to that of OprF, i.e., about 2 nm in diameter. The low permeability of OmpA(Ab) is not due to the inactivation of this protein during purification, because the permeability of the whole A. baumannii outer membrane was also very low. Furthermore, the outer membrane permeability to cephalothin and cephaloridine, measured in intact cells, was about 100-fold lower than that of E. coli K-12. The permeability of cephalothin and cephaloridine in A. baumannii was decreased 2- to 3-fold when the ompA(Ab) gene was deleted. These results show that OmpA(Ab) is the major nonspecific channel in A. baumannii. The low permeability of this porin, together with the presence of constitutive β-lactamases and multidrug efflux pumps, such as AdeABC and AdeIJK, appears to be essential for the high levels of intrinsic resistance to a number of antibiotics.  相似文献   

3.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

4.
5.
The mechanism of membrane insertion and folding of a beta-barrel membrane protein has been studied using the outer membrane protein A (OmpA) as an example. OmpA forms an eight-stranded beta-barrel that functions as a structural protein and perhaps as an ion channel in the outer membrane of Escherichia coli. OmpA folds spontaneously from a urea-denatured state into lipid bilayers of small unilamellar vesicles. We have used fluorescence spectroscopy, circular dichroism spectroscopy, and gel electrophoresis to investigate basic mechanistic principles of structure formation in OmpA. Folding kinetics followed a second-order rate law and is strongly depended on the hydrophobic thickness of the lipid bilayer. When OmpA was refolded into model membranes of dilaurylphosphatidylcholine, fluorescence kinetics were characterized by a rate constant that was about fivefold higher than the rate constants of formation of secondary and tertiary structure, which were determined by circular dichroism spectroscopy and gel electrophoresis, respectively. The formation of beta-sheet secondary structure and closure of the beta-barrel of OmpA were correlated with the same rate constant and coupled to the insertion of the protein into the lipid bilayer. OmpA, and presumably other beta-barrel membrane proteins therefore do not follow a mechanism according to the two-stage model that has been proposed for the folding of alpha-helical bundle membrane proteins. These different folding mechanisms are likely a consequence of the very different intramolecular hydrogen bonding and hydrophobicity patterns in these two classes of membrane proteins.  相似文献   

6.
Unfolded outer membrane protein A (OmpA) of Escherichia coli spontaneously inserts and refolds into lipid bilayers upon dilution of denaturing urea. In the accompanying paper, we have developed a new technique, time-resolved distance determination by fluorescence quenching (TDFQ), which is capable of monitoring the translocation across lipid bilayers of fluorescence reporter groups such as tryptophan in real time [Kleinschmidt, J. H., and Tamm, L. K. (1999) Biochemistry 38, 4996-5005]. Specifically, we have shown that wild-type OmpA, which contains five tryptophans, inserts into lipid bilayers via three structurally distinct membrane-bound folding intermediates. To take full advantage of the TDFQ technique and to further dissect the folding pathway, we have made five different mutants of OmpA, each containing a single tryptophan and four phenylalanines in the five tryptophan positions of the wild-type protein. All mutants refolded in vivo and in vitro and, as judged by SDS-PAGE, trypsin fragmentation, and Trp fluorescence, their refolded state was indistinguishable from the native state of OmpA. TDFQ analysis of the translocation across the lipid bilayer of the individual Trps of OmpA yielded the following results: Below 30 degrees C, all Trps started from a far distance from the bilayer center and then gradually approached a distance of approximately 10 A from the bilayer center. In a narrow temperature range between 30 and 35 degrees C, Trp-15, Trp-57, Trp-102, and Trp-143 were detected very close to the center of the lipid bilayer in the first few minutes and then moved to greater distances from the center. When monitored at 40 degrees C, which resolved the last steps of OmpA refolding, these four tryptophans crossed the center of the bilayer and approached distances of approximately 10 A from the center after refolding was complete. In contrast Trp-7 approached the 10 A distance from a far distance at all temperatures and was never detected to cross the center of the lipid bilayer. The translocation rates of Trp-15, Trp-57, Trp-102, and Trp-143 which are each located in different outer loop regions of the four beta-hairpins of the eight-stranded beta-barrel of OmpA were very similar to one another. This result and the common distances of these Trps from the membrane center observed in the third membrane-bound folding intermediate provide strong evidence for a synchronous translocation of all four beta-hairpins of OmpA across the lipid bilayer and suggest that OmpA inserts and folds into lipid bilayers by a concerted mechanism.  相似文献   

7.
An easy and reproducible procedure for purification and refolding of the full-length non-structural protein 3 (NS3) from hepatitis C virus has been developed. Refolding was achieved by simply diluting the protein into a suitable buffer. Low protein concentration, high pH, highly reducing conditions, the presence of detergent, and low viscosity were important parameters for high refolding efficiency. Refolding was insignificantly affected by the presence of Zn(2+) in the refolding buffer, while the addition of NS4A cofactor inhibited refolding. A comparison of the kinetic parameters showed that the refolded enzyme is not as catalytically competent as the native enzyme. Nevertheless, the activity of the refolded NS3 protease was dependent on the specific NS4A-peptide cofactor and was inhibited by the specific substrate-based NS3 protease inhibitor, which indicates that the refolded NS3 can be appropriate for inhibitor screening. The yield of pure protein from the insoluble fraction of cell lysate was 6 mg/L of bacterial culture, which is 18 times higher than obtained from the soluble fraction. Improvement of the refolding conditions has resulted in a 50-fold higher activity of the protease as compared to refolding in buffer with neutral pH and no additives.  相似文献   

8.
PLZF(promyelocytic leukaemia zinc finger protein)是一种重要的转录抑制因子,它由位于N端的BTB结构域和C端的锌指结构域构成。鉴于目前对于锌指结构域的立体结构还不是十分清楚,对其进行了高效表达和提纯。为了表达PLZF蛋白的锌指结构域,在其编码序列的5'端加上起始密码ATG后插入到表达载体PET-11a的多克隆位点。构建好的表达质粒转化到BL21 (DE3)大肠杆菌内并用IPTG诱导表达,发现重组蛋白主要以不溶性的包涵体形式在胞内表达。用含有SDS变性剂的缓冲液溶解包涵体后,采用凝胶过滤方法将重组蛋白纯化到纯度达96%以上。对纯化后的蛋白质用反透析的方法进行复性,然后用DNA结合实验进行活性分析,发现复性后的蛋白质具有特异的DNA结合活性,这为进一步研究PLZF蛋白锌指结构域的立体结构打下了重要基础。  相似文献   

9.
Acinetobacter baumannii is a multiresistant opportunistic nosocomial pathogen. A protein fraction was purified and analyzed by 2-DE. Twenty-nine major protein spots were selected for protein identification using trypsin digestion and MS analysis. As the A. baumannii genome has not yet been described, protein identification was performed by homology with other Acinetobacter species in the NCBi database. We identified ribosomal proteins, chaperones, elongation factors and outer membrane proteins (Omp), such as OmpA and the 33-36-kDa OMP. Proteomic analysis of A. baumannii provides a platform for further studies in antimicrobial resistance.  相似文献   

10.
The Omp21 protein from the proteobacterium Comamonas (Delftia) acidovorans belongs to the recently described beta8 family of outer membrane proteins, characterized by eight antiparallel beta-strands which form a beta-barrel. This family includes virulence proteins, OmpA and OmpX from Escherichia coli, and other related molecules. After we established an expression system, recombinant Omp21 was purified by Ni(2+) chelation affinity chromatography and refolded in situ while bound to resin. The native state of refolded protein was proven by FTIR spectroscopy and monitored with denaturing PAGE (heat modification). Both native and recombinant Omp21 were reconstituted in lipid membranes and crystallized two-dimensionally by controlled dialysis. Recombinant Omp21 crystallized as dimer and formed a p22(1)2(1) lattice with constants of a = 11.1 nm, b = 12.2 nm, gamma = 89.5 degrees. The 3-D structure of negatively stained, recombinant Omp21 was determined at a resolution of 1.8 nm by means of electron crystallography. Comparison with 3-D maps of OmpX and the transmembrane domain of OmpA revealed a high similarity between the mass distribution of exoplasmic loops of Omp21 and OmpA.  相似文献   

11.
Recombinant human growth hormone (r-hGH) was expressed in Escherichia coli as inclusion bodies. Using fed-batch fermentation process, around 670 mg/L of r-hGH was produced at a cell OD600 of 35. Cell lysis followed by detergent washing resulted in semi-purified inclusion bodies with more than 80% purity. Purified inclusion bodies were homogenous in preparation having an average size of 0.6 μm. Inclusion bodies were solubilized at pH 12 in presence of 2 M urea and refolded by pulsatile dilution. Refolded protein was purified with DEAE-anion exchange chromatography using both radial and axial flow column (50 ml bed volume each). Higher buffer flow rate (30 ml/min) in radial flow column helped in reducing the batch processing time for purification of refolded r-hGH. Radial column based purification resulted in high throughput recovery of diluted refolded r-hGH in comparison to axial column. More than 40% of inclusion body protein could be refolded into bioactive form using the above method in a single batch. Purified r-hGH was analyzed by mass spectroscopy and found to be bioactive by Nb2 cell line proliferation assay. Inclusion body enrichment, mild solubilization, pulsatile refolding and radial flow chromatography worked co-operatively to improve the overall recovery of bioactive protein from inclusion bodies.  相似文献   

12.
The bacterial outer membrane protein OmpA is one of the few membrane proteins whose structure has been solved both by X-ray crystallography and by NMR. Crystals were obtained in the presence of detergent, and the NMR structure is of the protein in a detergent micelle. We have used 10 ns duration molecular dynamics simulations to compare the behaviour of OmpA in a detergent micelle and in a phospholipid bilayer. The dynamic fluctuations of the protein structure seem to be ca 1.5 times greater in the micelle environment than in the lipid bilayer. There are subtle differences between the nature of OmpA-detergent and OmpA-lipid interactions. As a consequence of the enhanced flexibility of the OmpA protein in the micellar environment, side-chain torsion angle changes are such as to lead to formation of a continuous pore through the centre of the OmpA molecule. This may explain the experimentally observed channel formation by OmpA.  相似文献   

13.
Conlan S  Zhang Y  Cheley S  Bayley H 《Biochemistry》2000,39(39):11845-11854
A recombinant form of the porin OmpG, OmpGm, lacking the signal sequence, has been expressed in Escherichia coli. After purification under denaturing conditions, the protein was refolded in the detergent Genapol X-080, where it gained a structure rich in beta sheet as evidenced by a CD spectrum similar to that of the native form. Electrophoretic analysis and limited proteolysis experiments suggested that refolded OmpGm exists in at least three forms. Nevertheless, the recombinant protein formed uniform channels in planar bilayers with a conductance of 0.81 nS (1 M NaCl, pH 7.5). Previous biochemical studies had suggested that OmpG is a monomeric porin, rather than the usual trimer. Bilayer recordings substantiated this proposal; voltage-induced closures occurred consistently in a single step, and channel block by Gd(3+) lacked the cooperativity seen with the trimeric porin OmpF. The availability of milligram amounts of a monomeric porin will be useful both for basic studies of porin function and for membrane protein engineering.  相似文献   

14.
Extreme-drug-resistant (XDR) Acinetobacter baumannii is a rapidly emerging pathogen causing infections with unacceptably high mortality rates due to inadequate available treatment. New methods to prevent and treat such infections are a critical unmet medical need. To conduct a rational vaccine discovery program, OmpA was identified as the primary target of humoral immune response after intravenous infection by A. baumannii in mice. OmpA was >99% conserved at the amino acid level across clinical isolates harvested between 1951 and 2009 from cerebrospinal fluid, blood, lung, and wound infections, including carbapenem-resistant isolates, and was ≥89% conserved among other sequenced strains, but had minimal homology to the human proteome. Vaccination of diabetic mice with recombinant OmpA (rOmpA) with aluminum hydroxide adjuvant markedly improved survival and reduced tissue bacterial burden in mice infected intravenously. Vaccination induced high titers of anti-OmpA antibodies, the levels of which correlated with survival in mice. Passive transfer with immune sera recapitulated protection. Immune sera did not enhance complement-mediated killing but did enhance opsonophagocytic killing of A. baumannii. These results define active and passive immunization strategies to prevent and treat highly lethal, XDR A. baumannii infections.  相似文献   

15.
In this study, we were concerned with the structural role of the surface-exposed extracellular loops of the N-terminal transmembrane (TM) domain of OmpA. A variant of the TM domain of outer membrane protein A (OmpA) with all four such loops shortened, which we call the beta-barrel platform (BBP), was successfully refolded. This indicates that the removed parts of the surface-exposed loops indeed do not contain amino acid sequences critical for this membrane protein's refolding in vitro. BBP has the potential to be used as a template beta-barrel membrane protein structure for the development of novel functions, although our results also highlight the potential difficulties that can arise when functionality is being engineered into the loop regions of membrane proteins. We have used solution nuclear magnetic resonance spectroscopy to determine the global fold of BBP+EF, BBP with a metal ion-binding EF-hand inserted in one of the shortened loops. BBP and BBP+EF in dihexanoylphosphatidylcholine micelles are eight-stranded antiparallel beta-barrels, and BBP represents the smallest beta-structured integral membrane protein known to date.  相似文献   

16.
Detergents serve as means of solubilizing biological membranes and thus play an important role in purification and characterization of membrane proteins. We report here a simple method to estimate the amount of detergent bound to a protein or present in an aqueous solution. The method is based on the turbidity caused by the addition of a detergent to triolein. Detergent bound to an integral membrane protein, lysophosphatidic acid acyltransferase, was separated by native gel electrophoresis and the amount of detergent bound to the same was estimated. This method is applicable for Triton X-100, sodium dodecyl sulfate and zwitterionic detergent, and was validated in the presence of reagents commonly used in membrane protein solubilization and purification.  相似文献   

17.
Amphipols are a class of amphipathic polymers designed to maintain membrane proteins in aqueous solutions in the absence of detergents. Denatured β-barrel membrane proteins, like outer membrane proteins OmpA from Escherichia coli and FomA from Fusobacterium nucleatum, can be folded by dilution of the denaturant urea in the presence of amphipol A8-35. Here, the folding kinetics and stability of OmpA in A8-35 have been investigated. Folding is well described by two parallel first-order processes, whose half-times, ~5 and ~70 min, respectively, are independent of A8-35 concentration. The faster process contributed ~55–64 % to OmpA folding. Folding into A8-35 was faster than into dioleoylphosphatidylcholine bilayers and complete at ratios as low as ~0.17 g/g A8-35/OmpA, corresponding to ~1–2 A8-35 molecules per OmpA. Activation energies were determined from the temperature dependence of folding kinetics, monitored both by electrophoresis, which reports on the formation of stable OmpA tertiary structure, and by fluorescence spectroscopy, which reflects changes in the environment of tryptophan side chains. The two methods yielded consistent estimates, namely ~5–9 kJ/mol for the fast process and ~29–37 kJ/mol for the slow one, which is lower than is observed for OmpA folding into dioleoylphosphatidylcholine bilayers. Folding and unfolding titrations with urea demonstrated that OmpA folding into A8-35 is reversible and that amphipol-refolded OmpA is thermodynamically stable at room temperature. Comparison of activation energies for folding and unfolding in A8-35 versus detergent indicates that stabilization of A8-35-trapped OmpA against denaturation by urea is a kinetic, not a thermodynamic phenomenon.  相似文献   

18.
Biofilm formation is one of the main causes for the persistence of Acinetobacter baumannii, a pathogen associated with severe infections and outbreaks in hospitals. Here, we performed comparative proteomic analyses (2D-DIGE and MALDI-TOF/TOF and iTRAQ/SCX-LC-MS/MS) of cells at three different conditions: exponential, late stationary phase, and biofilms. These results were compared with alterations in the proteome resulting from exposure to a biofilm inhibitory compound (salicylate). Using this multiple-approach strategy, proteomic patterns showed a unique lifestyle for A. baumannii biofilms and novel associated proteins. Several cell surface proteins (such as CarO, OmpA, OprD-like, DcaP-like, PstS, LysM, and Omp33), as well as those involved in histidine metabolism (like Urocanase), were found to be implicated in biofilm formation, this being confirmed by gene disruption. Although l-His uptake triggered biofilms efficiently in wild-type A. baumannii, no effect was observed in Urocanase and OmpA mutants, while a slight increase was observed in a CarO deficient strain. We conclude that Urocanase plays a crucial role in histidine metabolism leading to biofilm formation and that OmpA and CarO can act as channels for L-His uptake. Finally, we propose a model in which novel proteins are suggested for the first time as targets for preventing the formation of A. baumannii biofilms.  相似文献   

19.
A putative rice trypsin/chymotrypsin inhibitor of the Bowman-Birk family, RBBI-8 of about 20 kDa, was expressed in Escherichia coli as a fusion protein bearing an N-terminal (His)6 purification tag. The expressed recombinant protein, rRBBI-8, is insoluble and accumulates as inclusion bodies. The insoluble protein was solubilized in 8 M urea under reducing environment and then refolded into its active conformation under optimized redox conditions. Strategies used to optimize yield and efficiency include selecting the redox system, increasing protein concentration during refolding by adding the denatured protein in a stepwise way, utilizing additives to prevent aggregation, and selecting buffer-exchanging conditions. A Ni-chelate affinity column was then employed to purify the renatured protein. rRBBI-8 shows strong inhibitory activity against trypsin and it can slightly inhibit chymotrypsin. In this study, a refolding and purification system was set up for this cysteine-rich recombinant protein expressed in a prokaryotic system.  相似文献   

20.
Availability of highly purified native beta-glucosidase Zm-p60.1 in milligram quantities was a basic requirement for analysis of structure-function relationships of the protein. Therefore, Zm-p60.1 was overexpressed to high levels as a fusion protein with a hexahistidine tag, (His)(6)Zm-p60.r, in Escherichia coli, resulting, however, in accumulation of most of the protein in insoluble inclusion bodies. Native (His)(6)Zm-p60.r was then purified either from the bacterial lysate soluble fraction or from inclusion bodies. In the first case, a single-step purification under native conditions based on immobilized metal affinity chromatography (IMAC) was developed. In the second case, a single-step purification protocol under denaturing conditions followed by IMAC-based matrix-assisted refolding was elaborated. The efficiency of the native protein purification from soluble fraction of bacterial homogenate was compared to the feasibility of purification and renaturation of the protein from inclusion bodies. Gain of authentic biological activity and quaternary structure after the refolding process was confirmed by K(m) determination and electrophoretic mobility under native conditions. The yield of properly refolded protein was assessed based on the specific activity of the refolded product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号