首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The manganese transport regulator (MntR) of Bacillus subtilis is a metalloregulatory protein responsible for regulation of genes involved in manganese uptake by this organism. MntR belongs to the iron-responsive DtxR family, but is allosterically regulated by manganese and cadmium ions. Having previously characterized the metal binding affinities of this protein as well as the DNA-binding activation profiles for the relevant metal ions, we have focused the current study on investigating the structural changes of MntR in solution upon binding divalent transition metal ions. Deuterium exchange mass spectrometry was utilized to investigate the deuterium exchange dynamics between apo-MntR, Co2+-MntR, Cd2+-MntR, and Mn2+-MntR. Comparing the rates of deuteration of each metal-bound form of MntR reveals that the N-terminal DNA-binding motif is more mobile in solution than the C-terminal dimerization domain. Furthermore, significant protection from deuterium exchange is observed in the helices that contribute metal-chelating amino acids to form the metal binding site of MntR. In contrast, the bulk of the DNA-binding winged helix–turn–helix motif shows no difference in deuterium exchange upon metal binding. Mapping of the deuteration patterns onto the crystal structures of MntR yields insight into how metal binding affects the protein structure and complements earlier studies on the mechanism of MntR. Metal binding acts to rigidify MntR, thereby limiting the mobility of the protein and reducing the entropic cost of DNA binding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The Bacillus subtilis manganese transport regulator, MntR, binds Mn2+ as an effector and is a repressor of transporters that import manganese. A member of the diphtheria toxin repressor (DtxR) family of metalloregulatory proteins, MntR exhibits selectivity for Mn2+ over Fe2+. Replacement of a metal-binding residue, Asp8, with methionine (D8M) relaxes this specificity. We report here the X-ray crystal structures of wild-type MntR and the D8M mutant bound to manganese with 1.75 A and 1.61 A resolution, respectively. The 142-residue MntR homodimer has substantial structural similarity to the 226-residue DtxR but lacks the C-terminal SH3-like domain of DtxR. The metal-binding pockets of MntR and DtxR are substantially different. The cation-to-cation distance between the two manganese ions bound by MntR is 3.3 A, whereas that between the metal ions bound by DtxR is 9 A. D8M binds only a single Mn2+ per monomer, owing to alteration of the metal-binding site. The sole retained metal site adopts pseudo-hexacoordinate geometry rather than the pseudo-heptacoordinate geometry of the MntR metal sites.  相似文献   

11.
12.
The Staphylococcus aureus DtxR-like protein, MntR, controls expression of the mntABC and mntH genes, which encode putative manganese transporters. Mutation of mntABC produced a growth defect in metal-depleted medium and increased sensitivity to intracellularly generated superoxide radicals. These phenotypes resulted from diminished uptake of manganese and were rescued by the addition of excess Mn(II). Resistance to superoxide was incompletely rescued by Mn(II) for STE035 (mntA mntH), and the strain had reduced virulence in a murine abscess model of infection. Expression of mntABC was repressed by Mn(II) in an MntR-dependent manner, which contrasts with the expression of mntH that was not repressed in elevated Mn(II) and was decreased in an mntR mutant. This demonstrates that MntR acts as a negative and positive regulator of these loci respectively. PerR, the peroxide resistance regulon repressor, acts with MntR to control the expression of mntABC and manganese uptake. The expression of the PerR-regulated genes, katA (catalase), ftn (ferritin) and fur (ferric uptake regulator), was diminished in STE031 (mntR) when grown in excess Mn(II). Therefore, the control of Mn(II)-regulated members of the PerR regulon and the Fur protein is modulated by MntR through its control of Mn(II) uptake. The co-ordinated regulation of metal ion homeostasis and oxidative stress resistance via the regulators MntR, PerR and Fur of S. aureus is discussed.  相似文献   

13.
14.
Reiter TA  Reiter NJ  Rusnak F 《Biochemistry》2002,41(51):15404-15409
Bacteriophage lambda protein phosphatase (lambdaPP) is a member of a large family of metal-containing phosphoesterases, including purple acid phosphatase, protein serine/threonine phosphatases, 5'-nucleotidase, and DNA repair enzymes such as Mre11. lambdaPP can be activated several-fold by various divalent metal ions, with Mn(2+) and Ni(2+) providing the most significant activation. Despite the extensive characterization of purified lambdaPP in vitro, little is known about the identity and stoichiometry of metal ions used by lambdaPP in vivo. In this report, we describe the use of metal analysis, activity measurements, and whole cell EPR spectroscopy to investigate in vivo metal binding and activation of lambdaPP. Escherichia coli cells overexpressing lambdaPP show a 22.5-fold increase in intracellular Mn concentration and less dramatic changes in the intracellular concentration of other biologically relevant metal ions compared to control cells that do not express lambdaPP. Phosphatase activity assessed using para-nitrophenylphosphate as substrate is increased 850-fold in cells overexpressing lambdaPP, indicating the presence of metal-activated enzyme in cell lysate. EPR spectra of intact cells overexpressing lambdaPP exhibit resonances previously attributed to mononuclear Mn(2+) and dinuclear [(Mn(2+))(2)] species bound to lambdaPP. Spin quantitation of EPR spectra of intact E. coli cells overexpressing lambdaPP indicates the presence of approximately 40 microM mononuclear Mn(2+)-lambdaPP and 60 microM [(Mn(2+))(2)]-lambdaPP. The data suggest that overexpression of lambdaPP results in a mixture of apo-, mononuclear-Mn(2+), and dinuclear-[(Mn(2+))(2)] metalloisoforms and that Mn(2+) is a physiologically relevant activating metal ion in E. coli.  相似文献   

15.
16.
17.
To survive in host cells, intracellular pathogens or symbiotic bacteria require protective mechanisms to overcome the oxidative stress generated by phagocytic activities of the host. By genomic library tagging, we cloned a dps (stands for DNA-binding protein from starved cells) gene of the symbiotic "Candidatus Legionella jeonii" organism (called the X bacterium) (dps(X)) that grows in Amoeba proteus. The gene encodes a 17-kDa protein (pI 5.19) with 91% homology to Dps and DNA-binding ferritin-like proteins of other organisms. The cloned gene complemented the dps mutant of Escherichia coli and conferred resistance to hydrogen peroxide. Dps(X) proteins purified from E. coli transformed with the dps(X) gene were in oligomeric form, formed a complex with pBlueskript SKII DNA, and protected the DNA from DNase I digestion and H(2)O(2)-mediated damage. The expression of the dps(X) gene in "Candidatus Legionella jeonii" was enhanced when the host amoeba was treated with 2 mM H(2)O(2) and by phagocytic activities of the host cell. These results suggested that the Dps protein has a function protective of the bacterial DNA and that its gene expression responds to oxidative stress generated by phagocytic activities of the host cell. With regard to the fact that invasion of Legionella sp. into respiratory phagocytic cells causes pneumonia in mammals, further characterization of dps(X) expression in the Legionella sp. that multiplies in a protozoan host in the natural environment may provide valuable information toward understanding the protective mechanisms of intracellular pathogens.  相似文献   

18.
19.
We performed functional analyses for various single amino-acid substitution variants of Escherichia coli, Bacillus subtilis, and human tRNase Zs. The well-conserved six histidine, His(I)-His(VI), and two aspartate, Asp(I) and Asp(II), residues together with metal ions are thought to form the active site of tRNase Z. The Mn(2+)-rescue analysis for Thermotoga maritima tRNase Z(S) has suggested that Asp(I) and His(V) directly contribute the proton transfer for the catalysis, and a catalytic mechanism has been proposed. However, experimental evidence supporting the proposed mechanism was limited. Here we intensively examined E. coli and B. subtilis tRNase Z(S) variants and human tRNase Z(L) variants for cleavage activities on pre-tRNAs in the presence of Mg(2+) or Mn(2+) ions. We observed that the Mn(2+) ions cannot rescue the activities of Asp(I)Ala and His(V)Ala variants from each species, which are lost in the presence of Mg(2+). This observation may support the proposed catalytic mechanism.  相似文献   

20.
The activities of the eight mutant proteins of Escherichia coli RNase HI, in which the four carboxylic amino acids (Asp(10), Glu(48), Asp(70), and Asp(134)) involved in catalysis are changed to Asn (Gln) or Ala, were examined in the presence of Mn(2+). Of these proteins, the E48A, E48Q, D134A, and D134N proteins exhibited the activity, indicating that Glu(48) and Asp(134) are dispensable for Mn(2+)-dependent activity. The maximal activities of the E48A and D134A proteins were comparable to that of the wild-type protein. However, unlike the wild-type protein, these mutant proteins exhibited the maximal activities in the presence of >100 microM MnCl(2), and their activities were not inhibited at higher Mn(2+) concentrations (up to 10 mM). The wild-type protein contains two Mn(2+) binding sites and is activated upon binding of one Mn(2+) ion at site 1 at low ( approximately 1 microM) Mn(2+) concentrations. This activity is attenuated upon binding of a second Mn(2+) ion at site 2 at high (>10 microM) Mn(2+) concentrations. The cleavage specificities of the mutant proteins, which were examined using oligomeric substrates at high Mn(2+) concentrations, were identical to that of the wild-type protein at low Mn(2+) concentrations but were different from that of the wild-type protein at high Mn(2+) concentrations. These results suggest that one Mn(2+) ion binds to the E48A, E48Q, D134A, and D134N proteins at site 1 or a nearby site with weaker affinities. The binding analyses of the Mn(2+) ion to these proteins in the absence of the substrate support this hypothesis. When Mn(2+) ion is used as a metal cofactor, the Mn(2+) ion itself, instead of Glu(48) and Asp(134), probably holds water molecules required for activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号