首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Our previous investigation on Candida glabrata azole-resistant isolates identified two isolates with unaltered expression of CgCDR1 / CgCDR2 , but with upregulation of another ATP-binding cassette transporter, CgSNQ2 , which is a gene highly similar to ScSNQ2 from Saccharomyces cerevisiae. One of the two isolates (BPY55) was used here to elucidate this phenomenon. Disruption of CgSNQ2 in BPY55 decreased azole resistance, whereas reintroduction of the gene in a CgSNQ2 deletion mutant fully reversed this effect. Expression of CgSNQ2 in a S. cerevisiae strain lacking PDR5 mediated not only resistance to azoles but also to 4-nitroquinoline N -oxide, which is a ScSNQ2 -specific substrate. A putative gain-of-function mutation, P822L, was identified in CgPDR1 from BPY55. Disruption of CgPDR1 in BPY55 conferred enhanced azole susceptibility and eliminated CgSNQ2 expression, whereas introduction of the mutated allele in a susceptible strain where CgPDR1 had been disrupted conferred azole resistance and CgSNQ2 upregulation, indicating that CgSNQ2 was controlled by CgPDR1 . Finally, CgSNQ2 was shown to be involved in the in vivo response to fluconazole. Together, our data first demonstrate that CgSNQ2 contributes to the development of CgPDR1 -dependent azole resistance in C. glabrata . The overlapping in function and regulation between CgSNQ2 and ScSNQ2 further highlight the relationship between S. cerevisiae and C. glabrata .  相似文献   

7.
Resistance to fluconazole is a possible event during prolonged suppressive drug therapy for cryptococ-cal meningitis, the most frequently encountered life-threatening manifestation of cryptococcosis. The knowledge of this resistance at the molecular level is important for management of cryptococcosis. In order to identify genes involved in azole resistance in Cryptococcus neoformans, a cDNA subtraction library technique was chosen as a strategy. First, a fluconazole-resistant mutant BPY22.17 was obtained from a susceptible clinical isolate BPY22 by in vitro exposure to the drug. Then, a subtractive hybridization procedure was used to compare gene expression between the obtained strains. We identified a cDNA overexpressed in the fluconazole-resistant strain BPY22.17 that was used as a probe to isolate the entire gene in a C. neoformans genomic library. Sequence analysis of this gene identified an ATP Binding Cassette (ABC) transporter-encoding gene called C. neoformans AntiFungal Resistance 1 (CnAFR1). Disruption of CnAFR1 gene in the resistant isolate (BPY22.17) resulted in an enhanced susceptibility of the knock-out mutant cnafr1 against fluconazole, whereas reintroduction of the gene in cnafr1 resulted in restoration of the resistance phenotype, thus confirming that CnAFR1 is involved in fluconazole resistance of C. neoformans. Our findings therefore reveal that an active drug efflux mechanism can be involved in the development of azole resistance in this important human pathogen.  相似文献   

8.
9.
10.
11.
12.
Clinical management of fungal diseases is compromised by the emergence of antifungal drug resistance in fungi, which leads to elimination of available drug classes as treatment options. An understanding of antifungal resistance at molecular level is, therefore, essential for the development of strategies to combat the resistance. This study presents the assessment of molecular mechanisms associated with fluconazole resistance in clinical Candida glabrata isolates originated from Iran. Taking seven distinct fluconazole-resistant C. glabrata isolates, real-time PCRs were performed to evaluate the alternations in the regulation of the genes involved in drug efflux including CgCDR1, CgCDR2, CgSNQ2, and CgERG11. Gain-of-function (GOF) mutations in CgPDR1 alleles were determined by DNA sequencing. Cross-resistance to fluconazole, itraconazole, and voriconazole was observed in 2.5 % of the isolates. In the present study, six amino acid substitutions were identified in CgPdr1, among which W297R, T588A, and F575L were previously reported, whereas D243N, H576Y, and P915R are novel. CgCDR1 overexpression was observed in 57.1 % of resistant isolates. However, CgCDR2 was not co-expressed with CgCDR1. CgSNQ2 was upregulated in 71.4 % of the cases. CgERG11 overexpression does not seem to be associated with azole resistance, except for isolates that exhibited azole cross-resistance. The pattern of efflux pump gene upregulation was associated with GOF mutations observed in CgPDR1. These results showed that drug efflux mediated by adenosine-5-triphosphate (ATP)-binding cassette transporters, especially CgSNQ2 and CgCDR1, is the predominant mechanism of fluconazole resistance in Iranian isolates of C. glabrata. Since some novel GOF mutations were found here, this study also calls for research aimed at investigating other new GOF mutations to reveal the comprehensive understanding about efflux-mediated resistance to azole antifungal agents.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号