首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Integrin-mediated adhesion regulates the recruitment of the small GTPase Rac to the plasma membrane and subsequent activation of downstream signaling. We recently reported that Rac binds preferentially to cholesterol-rich membranes (“lipid rafts”), and integrins regulate Rac function by preventing the internalization of its binding sites within these domains. Regulation of lipid rafts by integrins may be important for the spatial control of cell migration and signaling pathways involved in anchorage-dependent cell growth.  相似文献   

2.
Differential solubilization of membrane components by cold 1% Triton X-100 extraction is common practice in cell biology and membrane research, used to define components of, or localization within membrane domains called lipid rafts. In this study, extraction of biological membranes was continuously monitored in single cells by confocal microscopy. The distributions of fluorescently-tagged proteins that label raft and non-raft membranes, cytosolic and cytoskeletal proteins were continuously monitored upon addition of the detergent. Membranes containing the non-raft membrane protein VSVG-GFP were immediately extracted from the plasma membrane, whereas raft-membrane proteins were predominantly resistant to the detergent. The morphological characteristics of differential membrane solubilization consisted of the formation of pores that expand and percolate as the detergent-mediated solubilization proceeds. Pore expansion and percolation was much slower and more restricted in non-polarized MDCK cells than in COS-7 cells. Heterologous overexpression in COS-7 cells of the fluorescently-tagged human MAL, a tetra-spanning, lipid-raft-associated protein, significantly slowed and limited membrane pore expansion and percolation. Extensive percolation resulting in large holes in the membrane was observed for the raft-associated, GPI-GFP-labeled membranes in COS-7 cells. Quantitative analysis carried out using pixel intensity variance as an indicator of membrane pore expansion demonstrated that the MAL protein is capable of modifying the plasma membrane, thereby increasing its resistance to detergent-induced pore formation.  相似文献   

3.
Takeda T  Chang F 《Current biology : CB》2005,15(14):1331-1336
Specialized membrane domains containing lipid rafts are thought to be important for membrane processes such as signaling and trafficking. An unconventional type I myosin has been shown to reside in lipid rafts and function to target a disaccharidase to rafts in brush borders of intestinal mammalian cells. In the fission yeast Schizosaccharomyces pombe, distinct sterol-rich membrane domains are formed at the cell division site and sites of polarized cell growth at cell tips. Here, we show that the sole S. pombe myosin I, myo1p, is required for proper organization of these membrane domains. myo1 mutants lacking the TH1 domain exhibit a uniform distribution of sterol-rich membranes all over the plasma membrane throughout the cell cycle. These effects are independent of endocytosis because myo1 mutants exhibit no endocytic defects. Conversely, overexpression of myo1p induces ectopic sterol-rich membrane domains. Myo1p localizes to nonmotile foci that cluster in sterol-rich plasma membrane domains and fractionates with detergent-resistant membranes. Because the myo1p TH1 domain may bind directly to acidic phospholipids, these findings suggest a model for how type I myosin contributes to the organization of specialized membrane domains.  相似文献   

4.
The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization.  相似文献   

5.
MAL, a compact hydrophobic, four-transmembrane-domain apical protein that copurifies with detergent-resistant membranes is obligatory for the machinery that sorts glycophosphatidylinositol (GPI)-anchored proteins and others to the apical membrane in epithelia. The mechanism of MAL function in lipid-raft–mediated apical sorting is unknown. We report that MAL clusters formed by two independent procedures—spontaneous clustering of MAL tagged with the tandem dimer DiHcRED (DiHcRED-MAL) in the plasma membrane of COS7 cells and antibody-mediated cross-linking of FLAG-tagged MAL—laterally concentrate markers of sphingolipid rafts and exclude a fluorescent analogue of phosphatidylethanolamine. Site-directed mutagenesis and bimolecular fluorescence complementation analysis demonstrate that MAL forms oligomers via ϕxxϕ intramembrane protein–protein binding motifs. Furthermore, results from membrane modulation by using exogenously added cholesterol or ceramides support the hypothesis that MAL-mediated association with raft lipids is driven at least in part by positive hydrophobic mismatch between the lengths of the transmembrane helices of MAL and membrane lipids. These data place MAL as a key component in the organization of membrane domains that could potentially serve as membrane sorting platforms.  相似文献   

6.
T cell membrane receptors and signaling molecules assemble at the immunological synapse (IS) in a supramolecular activation cluster (SMAC), organized into two differentiated subdomains: the central SMAC (cSMAC), with the TCR, Lck, and linker for activation of T cells (LAT), and the peripheral SMAC (pSMAC), with adhesion molecules. The mechanism of protein sorting to the SMAC subdomains is still unknown. MAL forms part of the machinery for protein targeting to the plasma membrane by specialized mechanisms involving condensed membranes or rafts. In this article, we report our investigation of the dynamics of MAL during the formation of the IS and its role in SMAC assembly in the Jurkat T cell line and human primary T cells. We observed that under normal conditions, a pool of MAL rapidly accumulates at the cSMAC, where it colocalized with condensed membranes, as visualized with the membrane fluorescent probe Laurdan. Mislocalization of MAL to the pSMAC greatly reduced membrane condensation at the cSMAC and redistributed machinery involved in docking microtubules or transport vesicles from the cSMAC to the pSMAC. As a consequence of these alterations, the raft-associated molecules Lck and LAT, but not the TCR, were missorted to the pSMAC. MAL, therefore, regulates membrane order and the distribution of microtubule and transport vesicle docking machinery at the IS and, by doing so, ensures correct protein sorting of Lck and LAT to the cSMAC.  相似文献   

7.
Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts   总被引:1,自引:0,他引:1  
Integrin-mediated adhesion regulates membrane binding sites for Rac1 within lipid rafts. Detachment of cells from the substratum triggers the clearance of rafts from the plasma membrane through caveolin-dependent internalization. The small GTPase Arf6 and microtubules also regulate Rac-dependent cell spreading and migration, but the mechanisms are poorly understood. Here we show that endocytosis of rafts after detachment requires F-actin, followed by microtubule-dependent trafficking to recycling endosomes. When cells are replated on fibronectin, rafts exit from recycling endosomes in an Arf6-dependent manner and return to the plasma membrane along microtubules. Both of these steps are required for the plasma membrane targeting of Rac1 and for its activation. These data therefore define a new membrane raft trafficking pathway that is crucial for anchorage-dependent signalling.  相似文献   

8.
Li N  Mak A  Richards DP  Naber C  Keller BO  Li L  Shaw AR 《Proteomics》2003,3(4):536-548
Lipid rafts are membrane microdomains of unique lipid composition that segregate proteins with poorly understood consequences for membrane organization. Identification of raft associated proteins could therefore provide novel insight into raft-dependent functions. Monocytes process antigens for presentation to T cells by ingesting pathogens into calcium-dependent plasma membrane invaginations called "phagosomes" which develop by sequential fusion with the endoplasmic reticulum, early and late endosomes. We investigated the protein composition of Triton X-100 insoluble low density membranes of the monocyte cell-line THP-1 by matrix-assisted laser desorption/ionization-time of flight and tandem mass spectrometry. The ganglioside GM1 colocalized on the plasma membrane with the raft markers flotillin 1 and 2, which were enriched in low buoyant density fractions containing 52 identifiable proteins, 28 of which have not been reported in rafts, and nine of which are associated with the endoplasmic reticulum (ER). Remarkably, 27 of the 52 proteins are components of phagosomes, including the ER protein calnexin which we demonstrate is phosphorylated on serine 562, a switch controlling calcium homeostasis. The presence of the early and late endosome trafficking proteins Rab-1, and Rab-7 together with the late endosome protein LIMPII, indicate lipid rafts are present throughout endosome maturation. Identification of vacuolar ATP synthase, and synaptosomal-associated protein-23, proteins implicated in membrane fusion, together with the cytoskeletal proteins actin, alpha-actinin, and vimentin, and Rac 1, 2, and 3, regulators of cytoskeletal assembly, indicate monocyte lipid rafts contain the machinery to direct vesicular fusion and actin based vesicular migration throughout phagosome development.  相似文献   

9.
Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.  相似文献   

10.
The existence of membrane-rafts helps to conceptually understand the spatiotemporal organization of membrane-associated events (signaling, fusion, fission, etc.). However, as rafts themselves are nanoscopic, dynamic, and transient assemblies, they cannot be directly observed in a metabolizing cell by traditional microscopy. The observation of phase separation in giant plasma membrane-derived vesicles from live cells is a powerful tool for studying lateral heterogeneity in eukaryotic cell membranes, specifically in the context of membrane rafts. Microscopic phase separation is detectable by fluorescent labeling, followed by cooling of the membranes below their miscibility phase transition temperature. It remains unclear, however, if this lipid-driven process is tuneable in any way by interactions with proteins. Here, we demonstrate that MPP1, a member of the MAGUK family, can modulate membrane properties such as the fluidity and phase separation capability of giant plasma membrane-derived vesicles. Our data suggest that physicochemical domain properties of the membrane can be modulated, without major changes in lipid composition, through proteins such as MPP1.  相似文献   

11.
Rac1 and RhoA regulate membrane ruffling and stress fiber formation. Both molecules appear to exert their control from the plasma membrane. In fibroblasts stimulated with platelet-derived growth factor or lysophosphatidic acid, the reorganization of the cytoskeleton begins at specific sites on the cell surface. We now report that endogenous Rac1 and RhoA also have a polarized distribution at the cell surface. Cell fractionation and immunogold labeling show that in quiescent fibroblasts both of these molecules are concentrated in caveolae, which are plasma membrane domains that are associated with actin-rich regions of the cell. Treatment of these cells with platelet-derived growth factor stimulated the recruitment of additional Rac1 and RhoA to caveolae fractions, while lysophosphatidic acid only caused the recruitment of RhoA. We could reconstitute the recruitment of RhoA using either whole cell lysates or purified caveolae. Surprisingly, pretreatment of the lysates with exoenzyme C3 shifted both resident and recruited RhoA from caveolae to noncaveolae membranes. The shift in location was not caused by inactivation of the RhoA effector domain. Moreover, chimeric proteins containing the C-terminal consensus site for Rac1 and RhoA prenylation were constitutively targeted to caveolae fractions. These results suggest that the polarized distribution of Rho family proteins at the cell surface involves an initial targeting of the protein to caveolae and a mechanism for retaining it at this site.  相似文献   

12.
Sphingolipid and cholesterol-rich liquid ordered lipid domains (lipid rafts) have been studied in both eukaryotic cells and model membranes. However, while the coexistence of ordered and disordered liquid phases can now be easily demonstrated in model membranes, the situation in cell membranes remains ambiguous. Unlike the usual situation in model membranes, under most conditions, cell membranes rich in sphingolipid and cholesterol may have a "granular" organization in which the size of ordered and/or disordered domains is extremely small and domains may be of borderline stability. This review attempts to explain the origin of the divergence between of our understanding of rafts in model membranes and in cells, and how the physical properties of model membranes can help explain many of the ambiguities concerning raft formation and properties in cells. How physical principles of ordered domain formation relate to limitations of detergent insolubility and cholesterol depletion methods used to infer the presence of rafts in cells is also discussed. Possible modifications of these techniques that may increase their reliability are considered. It will be necessary to study model membrane systems more closely approximating cell membranes in order gain a complete understanding of raft properties in cells. Very high concentrations of membrane cholesterol and proteins may explain key physical characteristics of domains in cellular membranes, and are the two of the most obvious factors requiring additional study.  相似文献   

13.
Rho GTPases are well known to regulate actin dynamics. They activate two types of actin nucleators, WASP/WAVE proteins and Diaphanous-related formins (DRFs), which induce different types of actin organization. Their ability to interact with membranes allows them to target actin polymerization to discrete sites on the plasma membrane and to intracellular membrane compartments and thereby induce membrane protrusions or regulate vesicle movement. Most studies have concentrated on just three of the 22 mammalian Rho proteins, RhoA, Rac1 and Cdc42. However, recent research indicates that several other members of the Rho family, including Rif, RhoD, TC10 and Wrch1, and also related Rho-of-plants proteins (ROPs) in plants, stimulate actin polymerization and affect plasma membrane protrusion and/or vesicular traffic.  相似文献   

14.
Our recent studies have been aimed at understanding the mechanisms regulating apical protein sorting in polarized epithelial cells. In particular, we have been investigating how lipid rafts serve to sort apical proteins in the biosynthetic pathway. The recent findings that lipid domains are too small or transient to host apically destined cargo have led to newer versions of the hypothesis that invoke proteins required for lipid domain coalescence and stabilization. MAL (myelin and lymphocyte protein) and its highly conserved family member, MAL2, have emerged as possible regulators of this process in the direct and indirect apical trafficking pathways respectively. To test this possibility, we took a biochemical approach. We determined that MAL, but not MAL2, self-associates, forms higher-order cholesterol-dependent complexes with apical proteins and promotes the formation of detergent-resistant membranes that recruit apical proteins. Such biochemical properties are consistent with a role for MAL in raft coalescence and stabilization. These findings also support a model whereby hydrophobic mismatch between the long membrane-spanning helices of MAL and the short-acyl-chain phospholipids in the Golgi drive formation of lipid domains rich in raft components that are characterized by a thicker hydrophobic core to alleviate mismatch.  相似文献   

15.
The structural organization of the plasma membrane of eukaryotic cells is briefly revised taking into consideration the organization of proteins and lipids and the concept of microdomains, lipid rafts and detergent resistant membranes. The biochemical data available concerning the presence of microdomains in parasitic protozoa is reviewed and emphasis is given on the identification of special domains recognized by morphological approaches, especially with the use of the freeze-fracture technique.  相似文献   

16.
Temporal and spatial changes of membrane lipid distribution in the plasma membrane are thought to be important for various cellular functions. ATP-Binding Cassette A1 (ABCA1) is a key lipid transporter for the generation of high density lipoprotein. Recently, we reported that ABCA1 maintains an asymmetric distribution of cholesterol in the plasma membrane. Here we report that ABCA1 suppresses cell migration by modulating signal pathways. ABCA1 knockdown in mouse embryonic fibroblasts accelerated cell migration and increased activation of Rac1 and its localization to detergent-resistant membranes. Phosphorylation of MEK and ERK also increased. Inhibition of Rac1 or MEK-ERK signals suppressed cell migration in ABCA1 knockdown cells. Because our experimental conditions for cell migration did not contain cholesterol or lipid acceptors for ABCA1, cellular cholesterol content was not changed. These data suggest that ABCA1 modulates cell migration via Rac1 and MEK-ERK signaling by altering lipid distribution in the plasma membrane.  相似文献   

17.
The intracellular signaling processes controlling malignant B cell migration and tissue localization remain largely undefined. Tandem PH domain-containing proteins TAPP1 and TAPP2 are adaptor proteins that specifically bind to phosphatidylinositol-3,4-bisphosphate, or PI(3,4)P2, a product of phosphoinositide 3-kinases (PI3K). While PI3K enzymes have a number of functions in cell biology, including cell migration, the functions of PI(3,4)P2 and its binding proteins are not well understood. Previously we found that TAPP2 is highly expressed in primary leukemic B cells that have strong migratory capacity. Here we find that SDF-1-dependent migration of human malignant B cells requires both PI3K signaling and TAPP2. Migration in a transwell assay is significantly impaired by pan-PI3K and isoform-selective PI3K inhibitors, or by TAPP2 shRNA knockdown (KD). Strikingly, TAPP2 KD in combination with PI3K inhibitor treatment nearly abolished the migration response, suggesting that TAPP2 may contribute some functions independent of the PI3K pathway. In microfluidic chamber cell tracking assays, TAPP2 KD cells show reduction in percentage of migrating cells, migration velocity and directionality. TAPP2 KD led to alterations in chemokine-induced rearrangement of the actin cytoskeleton and failure to form polarized morphology. TAPP2 co-localized with the stable F-actin-binding protein utrophin, with both molecules reciprocally localizing against F-actin accumulated at the leading edge upon SDF-1 stimulation. In TAPP2 KD cells, Rac was over-activated and localized to multiple membrane protrusions, suggesting that TAPP2 may act in concert with utrophin and stable F-actin to spatially restrict Rac activation and reduce formation of multiple membrane protrusions. TAPP2 function in cell migration is also apparent in the more complex context of B cell migration into stromal cell layers – a process that is only partially dependent on PI3K and SDF-1. In summary, this study identified TAPP2 as a novel regulator of malignant B cell migration and a potential therapeutic intervention target.  相似文献   

18.
Lipid rafts, defined as cholesterol- and sphingolipid-rich domains, provide specialized lipid environments understood to regulate the organization and function of many plasma membrane proteins. Growing evidence of their existence, protein cargo, and regulation is based largely on the study of isolated lipid rafts; however, the consistency and validity of common isolation methods is controversial. Here, we provide a detailed and direct comparison of the lipid and protein composition of plasma membrane "rafts" prepared from human macrophages by different methods, including several detergent-based isolations and a detergent-free method. We find that detergent-based and detergent-free methods can generate raft fractions with similar lipid contents and a biophysical structure close to that previously found on living cells, even in cells not expressing caveolin-1, such as primary human macrophages. However, important differences between isolation methods are demonstrated. Triton X-100-resistant rafts are less sensitive to cholesterol or sphingomyelin depletion than those prepared by detergent-free methods. Moreover, we show that detergent-based methods can scramble membrane lipids during the isolation process, reorganizing lipids previously in sonication-derived nonraft domains to generate new detergent-resistant rafts. The role of rafts in regulating the biological activities of macrophage plasma membrane proteins may require careful reevaluation using multiple isolation procedures, analyses of lipids, and microscopic techniques.  相似文献   

19.
Clustering of proteins into membrane microdomains, such as lipid rafts and caveolae, could act as a mechanism for regulating cell signaling and other cellular functions. Certain lipid modifications are hypothesized to target proteins to these domains on the cytoplasmic leaflet of the plasma membrane. This concept has now been tested in living cells using an assay sensitive to the lateral distribution of proteins in membranes over sub-micron distances.  相似文献   

20.
Many signaling proteins are targeted to low density, sphingomyelin- and cholesterol-enriched membranes, also called lipid rafts. These domains organize receptor-mediated signaling events at the plasma membrane. Fatty acylation is one mechanism for targeting proteins to rafts. It was therefore of interest to determine if protein palmitoyltransferase activity is also present in these domains. In this study, protein palmitoyltransferase activity, assayed using G-protein alpha subunits as a substrate, was found to be highly enriched in low density membranes derived from cells that express caveolin as well as those that do not. Depletion of cellular cholesterol with the drug methyl-beta-cyclodextrin resulted in inhibition of palmitoyltransferase activity and a redistribution of the remaining activity to membranes of higher density. This effect was reversed by adding cholesterol to cyclodextrin-treated cells. When reconstituted into cell membranes, the population of purified recombinant G(alphai) that was palmitoylated was highly enriched in the low density membrane fractions, whereas the bulk unmodified G(alphai)-protein was largely excluded. This effect required palmitoyltransferase activity and was abolished if the palmitoylated cysteine was mutated. Thus, palmitoyltransferase facilitates the enrichment of fatty acylated signaling molecules in plasma membrane subdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号