首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partitioning a daily mechanical stimulus into discrete loading bouts enhances bone formation in rat tibiae (J. Bone Mineral Res. 15(8) (2000) 1596). We hypothesized that a refractory period exists in primary rat osteoblastic cells, during which fluid-flow-induced [Ca(2+)](i) oscillations are insensitive to additional short bouts (2 min) of fluid flow. Because the frequency of [Ca(2+)](i) oscillations is believed to be important for regulating cellular activity and long-term fluid flow alters gene expression in bone cells, we also hypothesized that long-term (15 min) oscillating fluid flow produces multiple [Ca(2+)](i) oscillations in osteoblastic cells. Primary osteoblastic cells from rat long bones were exposed to 2 min of oscillating fluid flow that produced shear stresses of 2 Pa at 2 Hz. After a rest period of 5, 30, 60, 300, 600, 900, 1800, or 2700 s, the cells were exposed to a second 2-min bout of flow. A 600 s rest period was required to recover the percentage of cells responding to fluid flow and a 900 s rest period was required to recover the [Ca(2+)](i) oscillation magnitude. The magnitude and shape of the two [Ca(2+)](i) oscillations were strikingly similar for individual cells after a 900 s rest period. During 15 min of continuous oscillating flow, some individual cells displayed between 1 and 9 oscillations subsequent to the initial [Ca(2+)](i) oscillation. However, only 54% of the cells that responded initially displayed subsequent [Ca(2+)](i) oscillations during long-term flow and the magnitude of the subsequent oscillations was only 28% of the initial response.  相似文献   

2.
3.
Rest insertion combined with high-frequency loading enhances osteogenesis.   总被引:2,自引:0,他引:2  
Mechanical loading can significantly affect skeletal adaptation. High-frequency loading can be a potent osteogenic stimulus. Additionally, insertion of rest periods between consecutive loading bouts can be a potent osteogenic stimulus. Thus we investigated whether the insertion of rest-periods between short-term high-frequency loading bouts would augment adaptation in the mature murine skeleton. Right tibiae of skeletally mature (16 wk) female C57BL/6 mice were loaded in cantilever bending at peak of 800 microepsilon, 30 Hz, 5 days/wk for 3 wk. Left tibiae were the contralateral control condition. Mice were randomly assigned into one of two groups: continuous high-frequency (CT) stimulation for 100 s (n = 9), or 1-s pulses of high-frequency stimuli followed by 10 s of rest (RI) for 100 s (n = 9). Calcein labels were administered on days 1 and 21; label incorporation was used to histomorphometrically assess periosteal and endosteal indexes of adaptation. Periosteal surface referent bone formation rate (pBFR/BS) was significantly enhanced in CT (>88%) and RI (>126%) loaded tibiae, relative to control tibiae. Furthermore, RI tibiae had significantly greater pBFR/BS, relative to CT tibiae (>72%). The endosteal surface was not as sensitive to mechanical loading as the periosteal surface. Thus short-term high-frequency loading significantly elevated pBFR/BS, relative to control tibiae. Furthermore, despite the 10-fold reduction in cycle number, the insertion of rest periods between bouts of high-frequency stimuli significantly augmented pBFR/BS, relative to tibiae loaded continually. Optimization of osteogenesis in response to mechanical loading may underpin the development of nonpharmacological regiments designed to increase bone strength in individuals with compromised bone structures.  相似文献   

4.
In this study, a new mechanical stimulator using the piezoelectric actuator was developed to give cultured bone cells mechanical strains with more physiologic magnitude, frequency components, and waveform. This stimulator provides bone cells in a three-dimensional collagen gel block culture mechanical strains with magnitude of 200-40,000 microstrain and frequency of DC-100 Hz, which sufficiently covers physiological strains on bone. Furthermore, the stimulator can generate not only common strain waveforms like sine and rectangular waves, but also arbitrary strain waveforms synthesized on a personal computer. In particular, the controllability of strain frequency and waveform is an advance over that of previous stimulators. Thus, this device can facilitate new findings regarding bone cell responses to mechanical stimuli.  相似文献   

5.
6.
Mechanical signals can inactivate glycogen synthase kinase 3β (GSK3β), resulting in stabilization of β-catenin. This signaling cascade is necessary for the inhibition of adipogenesis in mesenchymal stem cells (MSC) that is produced by a daily strain regimen. We investigated whether Akt is the mechanically activated kinase responsible for phosphorylation and inactivation of GSK3β in MSC. Mechanical strain (2% magnitude, 0.17 Hz) induced phosphorylation of Akt at Ser-473 and Thr-308 in parallel with phosphorylation of GSK3β at Ser-9. Inhibiting Akt (Akt1/2 kinase inhibitor treatment or Akt knockdown) prevented strain-induced phosphorylation of GSK3β at Ser-9. Inhibition of PI3K prevented Thr-308 phosphorylation, but strain-induced Ser-473 phosphorylation was measurable and induced phosphorylation of GSK3β, suggesting that Ser-473 phosphorylation is sufficient for the downstream mechanoresponse. As Rictor/mTORC2 (mammalian target of rapamycin complex 2) is known to transduce phosphorylation of Akt at Ser-473 by insulin, we investigated whether it contributes to strain-induced Ser-473 phosphorylation. Phosphorylation of Ser-473 by both mechanical and insulin treatment in MSC was prevented by the mTOR inhibitor KU0063794. When mTORC2 was blocked, mechanical GSK3β inactivation was prevented, whereas insulin inhibition of GSK3β was still measured in the absence of Ser-473 phosphorylation, presumably through phosphorylation of Akt at Thr-308. In sum, mechanical input initiates a signaling cascade that is uniquely dependent on mTORC2 activation and phosphorylation of Akt at Ser-473, an effect sufficient to cause inactivation of GSK3β. Thus, mechanical regulation of GSK3β downstream of Akt is dependent on phosphorylation of Akt at Ser-473 in a manner distinct from that of growth factors. As such, Akt reveals itself to be a pleiotropic signaling molecule whose downstream targets are differentially regulated depending upon the nature of the activating input.  相似文献   

7.
Mechanical factors affect bone remodeling such that increased mechanical demand results in net bone formation, whereas decreased demand results in net bone resorption. Two proposed mechanical signals are stress-generated fluid flow forces acting on cells and bone matrix deformation itself. A prominent current theory is that bone cells are more responsive to fluid flow than to mechanical strain. Recent experiments support this conclusion: bone cells increase their production of osteopontin (OPN) mRNA, prostaglandin (PGE(2)), and nitric oxide (NO) in response to fluid flow in contrast to cells stimulated by mechanical strain levels similar to those measured in vivo. However, when cells are subjected to substrate strains levels many times greater than those measured in vivo, increased biological activity again results. We assert that it is neither fluid flow nor matrix deformation per se, but rather the resulting cell deformation that causes cell biological response. Machined specimens of undamaged bovine cortical bone were subjected to increasing levels of macroscopic strain while observed under an optical microscope at 220X. Continuum level strain was measured using a standard foil strain gauge attached to the back of the specimen and ranged from 500 to 6,000 microstrain. Images of the specimen surface at each strain level were captured. To determine the level of osteocyte deformation that results from fluid flow in vitro, MLO-Y4 cells were cultured on collagen coated 190 cm2 plastic sheets and subjected to steady fluid flow at 16 dynes/cm(2). Images representing the initial undisturbed cell configuration and the configuration of the cells after ten minutes of fluid flow were acquired from a videotape of the flow experiment. The captured unloaded vs. loaded image pairs were analyzed to determine the local deformation and strain fields using a digital stereoimaging system. When subjected to a nominal continuum strain level approximately equal to that measured in humans in vivo during rigorous activity (2,000 microstrain), the local, osteocyte level strains can be as high as 12,000 to 15,000 microstrain (1.2% to 1.5%). Average osteocyte strains due to fluid flow in vitro increase from 7,972 microstrains after 16 seconds of flow to 22,856 microstrains after 64 seconds of flow. In contrast, maximum strains measured in vivo are approximately 1,800 microstrain in humans and up to 3,000 microstrain in other species. These data may help to explain why bone cells are more sensitive to fluid flow than substrate strain; fluid forces result in cell deformations much higher than those considered to be "physiological".  相似文献   

8.
It is well known that mechanical factors affect bone remodeling such that increased mechanical demand results in net bone formation, whereas decreased demand results in net bone resorption. Current theories suggest that bone modeling and remodeling is controlled at the cellular level through signals mediated by osteocytes. The objective of this study was to investigate how macroscopically applied bone strains similar in magnitude to those that occur in vivo are manifest at the microscopic level in the bone matrix. Using a digital image correlation strain measurement technique, experimentally determined bone matrix strains around osteocyte lacuna resulting from macroscopic strains of approximately 2,000 microstrain (0.2%) reach levels of over 30,000 microstrain (3%) over fifteen times greater than the applied macroscopic strain. Strain patterns were highly heterogeneous and in some locations similar to observed microdamage around osteocyte lacuna indicating the resulting strains may represent the precursors to microdamage. This information may lead to a better understanding of how bone cells are affected by whole bone functional loading.  相似文献   

9.
This study compared the fat metabolism between "a single bout of prolonged exercise" and "repeated bouts of exercise" of equivalent exercise intensity and total exercise duration. Seven men performed three trials: 1) a single bout of 60-min exercise (Single); 2) two bouts of 30-min exercise, separated by a 20-min rest between exercise bouts (Repeated); and 3) rest. Each exercise was performed with a cycle ergometer at 60% of maximal oxygen uptake. In the Single and Repeated trials, serum glycerol, growth hormone, plasma epinephrine, and norepinephrine concentrations increased significantly (P<0.05) during the first 30-min exercise bout. In the Repeated trial, serum free fatty acids (FFA), acetoacetate, and 3-hydroxybutyrate concentrations showed rapid increases (P<0.05) during a subsequent 20-min rest period. During the second 30-min exercise bout, FFA and epinephrine responses were significantly greater in the Repeated trial than in the Single trial (P<0.05). Moreover, the Repeated trial showed significantly lower values of insulin and glucose than the Single trial. During the 60-min recovery period after the exercise, FFA, glycerol, and 3-hydroxybutyrate concentrations were significantly higher in the Repeated trial than in the Single trial (P<0.05). The relative contribution of fat oxidation to the energy expenditure showed significantly higher values (P<0.05) in the Repeated trial than in the Single trial during the recovery period. These results indicate that repeated bouts of exercise cause enhanced fat metabolism compared with a single bout of prolonged exercise of equivalent total exercise duration.  相似文献   

10.
It has been shown previously using in vivo and ex vivo animal models, that cyclical mechanical stimulation is capable of maintaining osteocyte viability through the control of apoptotic cell death. Here we have studied the effect of mechanical stimulation on osteocyte viability in human trabecular bone maintained in a 3-D bioreactor system. Bone samples, maintained in the bioreactor system for periods of 3, 7 and 27 days, were subjected to either cyclical mechanical stimulation which engendered a maximum of 3,000 microstrain in a waveform corresponding to physiological jumping exercise for 5 minutes daily or control unloading. Unloading resulted in a decrease in osteocyte viability within 3 days that was accompanied by increased levels of cellular apoptosis. Mechanical stimulation significantly reduced apoptosis (p< or =0.032) and improved the maintenance of osteocyte viability in bone from all patient samples. The percentage Alkaline Phosphatase (ALP) labelled bone surface was significantly increased (p< or =0.05) in response to mechanical stimulation in all samples as was the Bone Formation Rate (BFR/BS) (p=0.005) as determined by calcein label incorporation in the 27-day experiment. These data indicate that in this model system, mechanical stimulation is capable of maintaining osteocyte viability in human bone.  相似文献   

11.
12.
Current theories suggest that bone modeling and remodeling are controlled at the cellular level through signals mediated by osteocytes. However, the specific signals to which bone cells respond are still unknown. Two primary theories are: (1) osteocytes are stimulated via the mechanical deformation of the perilacunar bone matrix and (2) osteocytes are stimulated via fluid flow generated shear stresses acting on osteocyte cell processes within canaliculi. Recently, much focus has been placed on fluid flow theories since in vitro experiments have shown that bone cells are more responsive to analytically estimated levels of fluid shear stress than to direct mechanical stretching using macroscopic strain levels measured on bone in vivo. However, due to the complex microstructural organization of bone, local perilacunar bone tissue strains potentially acting on osteocytes cannot be reliably estimated from macroscopic bone strain measurements. Thus, the objective of this study was to quantify local perilacunar bone matrix strains due to macroscopically applied bone strains similar in magnitude to those that occur in vivo. Using a digital image correlation strain measurement technique, experimentally measured bone matrix strains around osteocyte lacunae resulting from macroscopic strains of approximately 2000 microstrain are significantly greater than macroscopic strain on average and can reach peak levels of over 30,000 microstrain locally. Average strain concentration factors ranged from 1.1 to 3.8, which is consistent with analytical and numerical estimates. This information should lead to a better understanding of how bone cells are affected by whole bone functional loading.  相似文献   

13.
We hypothesize that when a broad spectrum of bone strain is considered, strain history is similar for different bones in different species. Using a data collection protocol with a fine resolution, mid-diaphyseal strains were measured in vivo for both weightbearing and non-weightbearing bones in three species: dog, sheep, and turkey, with strain information collected continuously while the animals performed their natural daily activities. The daily strain history was quantified by both counting cyclic strain events (to quantify the distribution of strains of different magnitudes) and by estimating the average spectral characteristics of the strain (to quantify the frequency content of the strain signals). Counting of the daily (12-24 h) strain events show that large strains (> 1000 microstrain) occur relatively few times a day, while very small strains (< 10 microstrain) occur thousands of times a day. The lower magnitude strains (< approximately 200 microstrain) are found to be more uniform around the bone cross-section than the higher magnitude, peak strains. Strain dynamics are found to be well described by a power-law relationship and exhibit self-similar characteristics. These data lead to the suggestion that the organization of bone tissue is driven by the continual barrage of activity spanning a wide but consistent range of frequency and amplitude, and until the mechanism of bone's mechanosensory system is fully understood, all portions of bone's strain history should be considered to possibly play a role in bone adaptation.  相似文献   

14.
15.
A potent regulator of bone anabolism is physical loading. However, it is currently unclear whether physical stimuli such as fluid shear within the marrow cavity is sufficient to directly drive the osteogenic lineage commitment of resident mesenchymal stem cells (MSC). Therefore, the objective of the study is to employ a systematic analysis of oscillatory fluid flow (OFF) parameters predicted to occur in vivo on early MSC osteogenic responses and late stage lineage commitment. MSCs were exposed to OFF of 1 Pa, 2 Pa and 5 Pa magnitudes at frequencies of 0.5 Hz, 1 Hz and 2 Hz for 1 h, 2 h and 4 h of stimulation. Our findings demonstrate that OFF elicits a positive osteogenic response in MSCs in a shear stress magnitude, frequency, and duration dependent manner that is gene specific. Based on the mRNA expression of osteogenic markers Cox2, Runx2 and Opn after short-term fluid flow stimulation, we identified that a regime of 2 Pa shear magnitude and 2 Hz frequency induces the most robust and reliable upregulation in osteogenic gene expression. Furthermore, long-term mechanical stimulation utilising this regime, elicits a significant increase in collagen and mineral deposition when compared to static control demonstrating that mechanical stimuli predicted within the marrow is sufficient to directly drive osteogenesis.  相似文献   

16.
It is well known that cyclic mechanical loading can produce an anabolic response in bone. In vivo studies have shown that the insertion of short-term recovery periods (10-15 s) into mechanical loading profiles led to an increased osteogenic response compared to continuous cyclic loading of bone. Although this is suggestive of temporal processing at the bone cell level, there is little evidence to support such a hypothesis. Therefore, the current study investigated the cellular mechanism of bone's response to rest inserted vs. continuous mechanical loading. Cell responses to rest inserted mechanical loading were quantified by applying oscillatory fluid flow (OFF) to osteoblastic cells and quantifying real-time intracellular calcium [Ca2+]i, prostaglandin E2 (PGE2) release, and osteopontin (OPN) mRNA levels. Cells were exposed to OFF (1 Hz) at shear stresses of 1 and 2 Pa with rest periods of 5, 10, and 15s inserted every 10 loading cycles. The insertion of 10 and 15s rest periods into the flow profile resulted in multiple [Ca2+]i responses by individual cells, increased [Ca2+]i response magnitudes, and increased overall percent of cells responding compared to continuously loaded control groups. We determined the source of the multiple calcium responses to be from intracellular stores. In addition, rest inserted OFF led to similar levels of PGE2 release and increased levels of relative OPN mRNA compared to cells exposed to continuous OFF. Our study suggests that the cellular mechanism of bone adaptation to rest inserted mechanical loading may involve modulation of intracellular levels of calcium (frequency, magnitude, percent of cells responding).  相似文献   

17.
Cui L  Li T  Liu Y  Zhou L  Li P  Xu B  Huang L  Chen Y  Liu Y  Tian X  Jee WS  Wu T 《PloS one》2012,7(4):e34647
Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10(-6) mol/L to 10(-7) mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with or without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis.  相似文献   

18.
DP Burke  DJ Kelly 《PloS one》2012,7(7):e40737
Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC) differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.  相似文献   

19.

Background

Mesenchymal stromal cells (MSC) are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS) is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL) has proven to be a suitable alternative to FBS for expansion of human MSC.

Hypothesis and Objectives

We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1) isolation, 2) proliferation, 3) spontaneous differentiation, and 4) directed differentiation.

Results

1) Medium with 10% PL was unable to isolate MSC. 2) MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT) or 30% (BM) enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3) Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4) MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis.

Conclusions/Significance

Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects.  相似文献   

20.
βcatenin acts as a primary intracellular signal transducer for mechanical and Wnt signaling pathways to control cell function and fate. Regulation of βcatenin in the cytoplasm has been well studied but βcatenin nuclear trafficking and function remains unclear. In a previous study we showed that, in mesenchymal stem cells (MSC), mechanical blockade of adipogenesis relied on inhibition of βcatenin destruction complex element GSK3β (glycogen synthase kinase 3β) to increase nuclear βcatenin as well as the function of Linker of Cytoskeleton and Nucleoskeleton (LINC) complexes, suggesting that these two mechanisms may be linked. Here we show that shortly after inactivation of GSK3β due to either low intensity vibration (LIV), substrate strain or pharmacologic inhibition, βcatenin associates with the nucleoskeleton, defined as the insoluble nuclear fraction that provides structure to the integrated nuclear envelope, nuclear lamina and chromatin. Co-depleting LINC elements Sun-1 and Sun-2 interfered with both nucleoskeletal association and nuclear entry of βcatenin, resulting in decreased nuclear βcatenin levels. Our findings reveal that the insoluble structural nucleoskeleton actively participates in βcatenin dynamics. As the cytoskeleton transmits applied mechanical force to the nuclear surface to influence the nucleoskeleton and its LINC mediated interaction, our results suggest a pathway by which LINC mediated connectivity may play a role in signaling pathways that depend on nuclear access of βcatenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号