首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Transmembrane topography and evolutionary conservation of synaptophysin   总被引:21,自引:0,他引:21  
Synaptophysin is the major integral membrane protein of small synaptic vesicles. Its primary structure deduced from rat and human complementary DNA sequences predicts that synaptophysin contains four transmembrane regions and a carboxyl-terminal domain having a novel repetitive structure. To elucidate the transmembrane organization of this protein in the synaptic vesicle, five antipeptide antibodies were raised. The site-specific antibodies were used to map the cognate sequences to the cytoplasmic or intravesicular side of the synaptic vesicle membrane by determining the susceptibility of the epitopes to proteolysis. The results confirm a topographic model for synaptophysin in which the protein spans the vesicle membrane four times, with both the amino and carboxyl terminus being cytoplasmic. In addition, the evolutionary conservation of the synaptophysin domains was addressed as a function of their membrane localization. To this end the primary structure of bovine synaptophysin was determined. Sequence comparisons between bovine, rat, and human synaptophysin revealed that only the intravesicular loops showed a significant number of amino acid substitutions (22%), while the transmembrane regions and cytoplasmic sequences were highly conserved (3% substitutions). These results depict synaptophysin as a protein with multiple membrane spanning regions whose functional site is likely to reside in highly conserved intramembranous and cytoplasmic sequences.  相似文献   

3.
Ovules have an important role during the life cycle of the plant, and they provide an excellent model for studying organogenesis in plants. As such, the molecular control of ovule development has been studied for many years. Recent studies in Arabidopsis have revealed important new data concerning ovule primordia formation, ovule identity determination, and patterning. Furthermore, interesting results about ovule development in other species, such as Petunia and rice, have been published recently. In this review, we discuss these recent findings in reference to ovule development in Arabidopsis. We compare available data with those of other species to investigate the evolutionary conservation of the regulatory pathways.  相似文献   

4.

Background  

Cellular metabolism is a fundamental biological system consisting of myriads of enzymatic reactions that together fulfill the basic requirements of life. The recent availability of vast amounts of sequence data from diverse sets of organisms provides an opportunity to systematically examine metabolism from a comparative perspective. Here we supplement existing genome and protein resources with partial genome datasets derived from 193 eukaryotes to present a comprehensive survey of the conservation of metabolism across 26 taxa representing the three domains of life.  相似文献   

5.
Genetic conservation: our evolutionary responsibility   总被引:5,自引:0,他引:5       下载免费PDF全文
Frankel OH 《Genetics》1974,78(1):53-65
The conservation of the crop varieties of traditional agriculture in the centers of genetic diversity is essential to provide genetic resources for plant improvement. These resources are acutely threatened by rapid agricultural development which is essential for the welfare of millions. Methodologies for genetic conservation have been worked out which are both effective and economical. Urgent action is needed to collect and preserve irreplaceable genetic resources.

Wild species, increasingly endangered by loss of habitats, will depend on organized protection for their survival. On a long term basis this is feasible only within natural communities in a state of continuing evolution, hence there is an urgent need for exploration and clarification of the genetic principles of conservation. Gene pools of wild species are increasingly needed for various uses, from old and new industries to recreation. But the possibility of a virtual end to the evolution of species of no direct use to man raises questions of responsibility and ethics.

  相似文献   

6.
Although posttranslational protein modifications are generally thought to perform important cellular functions, recent studies showed that a large fraction of phosphorylation sites are not evolutionarily conserved. Whether the same is true for other protein modifications, such as N-glycosylation is an open question. N-glycosylation is a form of cotranslational and posttranslational modification that occurs by enzymatic addition of a polysaccharide, or glycan, to an asparagine (N) residue of a protein. Examining a large set of experimentally determined mouse N-glycosylation sites, we find that the evolutionary rate of glycosylated asparagines is significantly lower than that of nonglycosylated asparagines of the same proteins. We further confirm that the conservation of glycosylated asparagines is accompanied by the conservation of the canonical motif sequence for glycosylation, suggesting that the above substitution rate difference is related to glycosylation. Interestingly, when solvent accessibility is considered, the substitution rate disparity between glycosylated and nonglycosylated asparagines is highly significant at solvent accessible sites but not at solvent inaccessible sites. Thus, although the solvent inaccessible glycosylation sites were experimentally identified, they are unlikely to be genuine or physiologically important. For solvent accessible asparagines, our analysis reveals a widespread and strong functional constraint on glycosylation, unlike what has been observed for phosphorylation sites in most studies, including our own analysis. Because the majority of N-glycosylation occurs at solvent accessible sites, our results show an overall functional importance for N-glycosylation.  相似文献   

7.
Conservation biologists assign population distinctiveness by classifying populations as evolutionarily significant units (ESUs). Historically, this classification has included ecological and genetic data. However, recent ESU concepts, coupled with increasing availability of data on neutral genetic variation, have led to criteria based exclusively on molecular phylogenies. We argue that the earlier definitions of ESUs, which incorporated ecological data and genetic variation of adaptive significance, are more relevant for conservation. Furthermore, this dichotomous summary (ESU or not) of a continuum of population differentiation is not adequate for determining appropriate management actions. We argue for a broader categorization of population distinctiveness based on concepts of ecological and genetic exchangeability (sensu Templeton).  相似文献   

8.
Conservation management for environmental sustainability is now ubiquitous. The ecological effects of these actions are well-intentioned and well-known. Although conservation biologists and managers increasingly incorporate evolutionary considerations into management plans, the evolutionary consequences of management strategies have remained relatively unexplored and unconsidered. But what are the evolutionary consequences? Here, we advocate a new research agenda focused on identifying, predicting, and countering the evolutionary consequences of conservation management. We showcase the examples of park creation and invasive species management, and speculate further on five other major methods of management. Park creation may cause selection for altered dispersal and behavior that utilizes human foods and structures. Management of invasive species may favor the evolution of resistance to or tolerance of control methods. In these and other cases, evolution may cause deviations from the predicted consequences of management strategies optimized without considering evolution, particularly when management results in or coincides with major environmental change, if population size change strongly, or if life histories are short enough to allow more rapid evolution. We call for research focused on: (1) experimental predictions and tests of evolution under particular management strategies, (2) widespread monitoring of managed populations and communities, and (3) meta-analysis and theoretical study aimed at simplifying the process of evolutionary prediction, particularly at systematizing a means of identifying traits likely to evolve due to likely existing genetic variance or high mutation rates. Ultimately, conservation biologists should incorporate evolutionary prediction into management planning to prevent the evolutionary domestication of the species that they are trying to protect.  相似文献   

9.
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is generally considered the major regulatory posttranslational modification in eukaryotic cells. Increasing evidence at the genome and proteome level shows that this modification is also present and functional in prokaryotes. We have recently reported the first in-depth phosphorylation site-resolved dataset from the model Gram-positive bacterium, Bacillus subtilis, showing that Ser/Thr/Tyr phosphorylation is also present on many essential bacterial proteins. To test whether this modification is common in Eubacteria, here we use a recently developed proteomics approach based on phosphopeptide enrichment and high accuracy MS to analyze the phosphoproteome of the model Gram-negative bacterium Escherichia coli. We report 81 phosphorylation sites on 79 E. coli proteins, with distribution of Ser/Thr/Tyr phosphorylation sites 68%/23%/9%. Despite their phylogenetic distance, phosphoproteomes of E. coli and B. subtilis show striking similarity in size, classes of phosphorylated proteins, and distribution of Ser/Thr/Tyr phosphorylation sites. By combining the two datasets, we created the largest phosphorylation site-resolved database of bacterial phosphoproteins to date (available at www.phosida.com) and used it to study evolutionary conservation of bacterial phosphoproteins and phosphorylation sites across the phylogenetic tree. We demonstrate that bacterial phosphoproteins and phosphorylated residues are significantly more conserved than their nonphosphorylated counterparts, with a number of potential phosphorylation sites conserved from Archaea to humans. Our results establish Ser/Thr/Tyr phosphorylation as a common posttranslational modification in Eubacteria, present since the onset of cellular life.  相似文献   

10.
11.
Having quantitative data to use in a reliable model in conservation can be extremely limiting because of the usual scarcity of such information. The body of theory accumulated so far in evolutionary ecology, and particularly in the evolution of life-history traits, can also come in the aid of conservation practitioners and provide them with some help in the absence of quantitative data. Although some attempts have been made already to bridge the gap between evolution and applied conservation, this interface remains to be properly delineated. Here we present a diverse number of examples of the applicability of evolutionary knowledge to the effective solution of diverse applied conservation problems. We first deal with the opposed strategies of animal and plant species inhabiting survival versus reproduction habitats, and the most adequate management approaches in both cases, with special emphasis in assessing the risks of supplementing food and nest boxes for conservation purposes. Secondly, we deal with invasion biology and suggest that a better understanding of the problem of biological invasions, and a better management of it, is gained if the focus is moved from invasive species characteristics to the properties of the invaded community from an evolutionary perspective. Finally, we show how the management of complex predator–prey interactions can benefit from the application of knowledge on life-history evolution and discuss the particularities of culling programs applied either to short-lived or long-lived species in order to be effective.  相似文献   

12.
Only some imprinting control regions (ICRs) acquire their DNA methylation in the male germ line. These imprints are protected against the global demethylation of the sperm genome following fertilisation, and are maintained throughout development. We find that in somatic cells and tissues, DNA methylation at these ICRs is associated with histone H4-lysine-20 and H3-lysine-9 trimethylation. The unmethylated allele, in contrast, has H3-lysine-4 dimethylation and H3 acetylation. These differential modifications are also detected at maternally methylated ICRs, and could be involved in the somatic maintenance of imprints. To explore whether the post-fertilisation protection of imprints relates to events during spermatogenesis, we assayed chromatin at stages preceding the global histone-to-protamine exchange. At these stages, H3-lysine-4 methylation and H3 acetylation are enriched at maternally methylated ICRs, but are absent at paternally methylated ICRs. H4 acetylation is enriched at all regions analysed. Thus, paternally and maternally methylated ICRs carry different histone modifications during the stages preceding the global histone-to-protamine exchange. These differences could influence the way ICRs are assembled into specific structures in late spermatogenesis, and may thus influence events after fertilisation.  相似文献   

13.
14.
Phylogenetic diversity (PD) is an important measure for identifying areas of conservation. Phylogenetic diversity is a robust biodiversity metric because it accounts for the relationships among species, and not just the number of species. For this reason, it is an essential element for conservation planning. Unfortunately, PD metrics are not used by many for conservation planning. In the case of Colombia, which is rich in crop and wild plant biodiversity, lacks information on genetic resources of Crop Wild Relatives (CWR). Due to deforestation and agriculture expansion, the habitat, where these crop wild relatives grow, is being reduced at an alarming rate and could be destroyed altogether. This study focuses on crop wild relatives in Colombia, comparing species diversity versus PD-based metrics to show the advantages of using evolutionary information for conservation planning. We identified new areas with high PD and endemism among CWR diversity which are important to establishing comprehensive conservation strategies.  相似文献   

15.
The thioredoxin family of oxidoreductases plays an important role in redox signaling and control of protein function. Not only are thioredoxins linked to a variety of disorders, but their stable structure has also seen application in protein engineering. Both sequence-based and structure-based tools exist for thioredoxin identification, but remote homolog detection remains a challenge. We developed a thioredoxin predictor using the approach of integrating sequence with structural information. We combined a sequence-based Hidden Markov Model (HMM) with a molecular dynamics enhanced structure-based recognition method (dynamic FEATURE, DF). This hybrid method (HMMDF) has high precision and recall (0.90 and 0.95, respectively) compared with HMM (0.92 and 0.87, respectively) and DF (0.82 and 0.97, respectively). Dynamic FEATURE is sensitive but struggles to resolve closely related protein families, while HMM identifies these evolutionary differences by compromising sensitivity. Our method applied to structural genomics targets makes?a strong prediction of a novel thioredoxin.  相似文献   

16.
17.
Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups.  相似文献   

18.
The Drosophila gene nanos encodes two particular zinc finger motifs which are also found in germline-associated factors from nematodes to vertebrates. We cloned two nanos (nos)-related genes, Cnnos1 and Cnnos2 from Hydra magnipapillata. Using whole-mount in situ hybridization, the expression of Cnnos1 and Cnnos2 was examined. Cnnos1 was specifically expressed in multipotent stem cells and germline cells, but not in somatic cells. Cnnos2 was weakly expressed in germline cells and more specifically in the endoderm of the hypostome where it appears to be involved in head morphogenesis. In addition to structural conservation in the zinc finger domain of nanos-related genes, functional conservation of Cnnos1 was also demonstrated by the finding that a Cnnos1 transgene can partially rescue the nos RC phenotype that is defective in the egg production of Drosophila. Thus, the function of nanos-related genes in the germline appears to be well conserved from primitive to highly evolved metazoans. Received: 28 April 2000 / Accepted: 1 July 2000  相似文献   

19.
20.
Recent years have seen a debate over various methods that could objectively prioritize conservation value below the species level. Most prominent among these has been the evolutionarily significant unit (ESU). We reviewed ESU concepts with the aim of proposing a more unified concept that would reconcile opposing views. Like species concepts, conflicting ESU concepts are all essentially aiming to define the same thing: segments of species whose divergence can be measured or evaluated by putting differential emphasis on the role of evolutionary forces at varied temporal scales. Thus, differences between ESU concepts lie more in the criteria used to define the ESUs themselves rather than in their fundamental essence. We provide a context-based framework for delineating ESUs which circumvents much of this situation. Rather than embroil in a befuddled debate over an optimal criterion, the key to a solution is accepting that differing criteria will work more dynamically than others and can be used alone or in combination depending on the situation. These assertions constitute the impetus behind adaptive evolutionary conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号