首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
d-Serine is a brain-enriched d-amino acid that works as a transmitter-like molecule by physiologically activating NMDA receptors. Synthesis of d-serine is carried out by serine racemase (SR), a pyridoxal 5'-phosphate-dependent enzyme. In addition to carry out racemization, SR α,β-eliminates water from l- or d-serine, generating pyruvate and NH(4)(+). Here I review the main mechanisms regulating SR activity and d-serine dynamics in the brain. I propose a role for SR in a novel form of astrocyte-neuron communication-the "serine shuttle", whereby astrocytes synthesize and export l-serine required for the synthesis of d-serine by the predominantly neuronal SR. d-Serine synthesized and released by neurons can be further taken up by astrocytes for storage and activity-dependent release. I discuss how SR α,β-elimination with d-serine itself may limit the achievable intracellular d-serine concentration, providing a mechanistic rationale on why neurons do not store as much d-serine as astrocytes. The higher content of d-serine in astrocytes appears to be related to increased d-serine stability, for their low SR expression will prevent substantial d-serine metabolism via α,β-elimination. SR and the serine shuttle pathway are therapeutic targets in neurodegenerative diseases in which NMDA receptor dysfunction plays pathological roles. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.  相似文献   

2.
钝齿棒杆菌(Corynebacterium crenatum)AS.M7是筛选获得的一株高产精氨酸生产菌株。ArgR是精氨酸合成过程中的一种调控蛋白。为进一步验证其在钝齿棒杆菌中对精氨酸合成量的影响,利用特异性引物,分别扩增标准菌C. creantum AS 1.542和诱变菌C. creantum AS.M7的argR全长基因,测序后比较二者的差异;结果表明标准菌argR基因ORF全长516 bp,编码一个含172个氨基酸残基的蛋白;而诱变菌argR基因的109位碱基由C替换为T,导致ArgR蛋白在钝齿诱变菌中表达被提前终止。同时,将来源于标准菌的argR基因连接到穿梭表达载体pXMJ19中,电击转化至诱变菌C. crenatum AS.M7 得到重组菌株,用摇瓶发酵的方法观测重组菌产精氨酸量的变化。SDS-PAGE和Western blot分析证明标准菌的argR基因在诱变菌中得到了表达。对重组诱变菌产精氨酸量进行了测定,结果显示:产精氨酸能力由原来7.8 mg/ml下降至2.5 mg/ml,下降了约67.9%。  相似文献   

3.
d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor, plays an important role in mammalian brain neurotransmission, via the NMDA receptor. d-Serine is synthesized from l-serine by the pyridoxal-5′ phosphate-dependent enzyme serine racemase (SRR), and d-serine is metabolized by d-amino acid oxidase (DAAO). In this study, we measured levels of the neurotransmission related amino acids, d-serine, l-serine, glycine, glutamine and glutamate in the frontal cortex, hippocampus, striatum and cerebellum as well as in peripheral tissues of blood, heart, pancreas, spleen, liver, kidney, testis, epididymis, heart, lung, muscle and eyeball, in wild-type (WT) and Srr-knockout (Srr-KO) mice. Levels of d-serine in the frontal cortex, hippocampus, and striatum of Srr-KO mice were significantly lower than in WT mice, while levels in the cerebellum stayed the same. In contrast, levels of l-serine, glycine, glutamine and glutamate remained the same in all tested brain regions. In vivo microdialysis using free-moving mice showed that extracellular levels of d-serine in the hippocampus of Srr-KO mice were significantly lower than in WT mice while the other amino acid levels remained the same between mice. In peripheral organs, levels of d-serine in the kidney, testis, and muscle of Srr-KO mice were significantly lower than in WT mice. Tissue levels of the other tested amino acids in peripheral organs were not altered. These results suggest that SRR is the major enzyme responsible for d-serine production in the mouse forebrain, and that other pathways of d-serine production may exist in the brain and peripheral organs.  相似文献   

4.
Tryptophanase from Bacillus alvei also possesses serine dehydratase activity. A comparison of this enzyme with l-serine dehydratase [l-serine hydro-lyase (deaminating), EC 4.2.1.13] in toluene-treated whole cell preparations of the organism was undertaken. Tryptophanase is a constitutive enzyme in B. alvei. The dehydratase undergoes a repression-derepression-repression sequence as the l-serine level in the growth medium is increased from 0 to 0.1 m. Tryptophanase activity is decreased in organisms grown in medium containing glucose. Both enzymes are repressed in organisms grown in glycerol-containing medium. l-Serine dehydratase has a pH optimum of 7.5 in potassium phosphate buffer; tryptophanase functions optimally in this buffer at pH 8.2. Both enzymes lose activity in the presence of tris(hydroxymethyl)aminomethane buffer. Either K(+) or NH(4) (+) is required for full tryptophanase activity, but Na(+) is markedly inhibitory. These three cations are stimulatory to l-serine dehydratase activity. Both enzymes are subject to apparent substrate inhibition at high concentrations of their respective amino acids, but the inhibition of tryptophanase activity can be completely overcome by the removal of indole as it is formed. The dehydratase does not catalyze cleavage of d-serine, l-threonine, or alpha-substituted serine analogues at the concentrations tested. However, activity of the enzyme in cleaving l-serine is competitively inhibited by d-serine, indicating that the d-isomer can occupy an active site on the enzyme. The enzyme catalyzes cleavage of some beta-substituted serine analogues.  相似文献   

5.
When Lemna minor was cultured in the presence of 0.25 mM l-lysine, the concentration of free methionine and formyl and methyl tetrahydrofolate (THFA) were decreased. l-lysine, l-homoserine, l-threonine and l-methionine at concentrations up to 8 mM did not affect N10-formyl THFA synthetase (E.C. 6.3.4.3) and N5,N10-methylene THFA reductase (E.C. 1.1.1.68). In contrast, serine hydroxymethyltransferase (E.C. 2.1.2.1) activity was inhibited by lysine. This inhibition gave a sigmoidal curve when plotted for a range of l-lysine or THFA concentrations. Exogenous lysine also reduced the incorporation of glycine [14C] and serine [3-14C] into free and protein methionine. Lysine, which is known to control synthesis of homocysteine in L. minor, may also regulate production of C-1 units for methionine synthesis by inhibition of serine hydroxymethyltransferase.  相似文献   

6.
Previous studies have shown that the deletion of brnQ from the Corynebacterium glutamicum chromosome results in a significant reduction in L-isoleucine uptake rates, while overexpression of brnFE leads to enhanced L-isoleucine export rates. Given that net excretion rates would be an important factor for high titers of L-isoleucine accumulation, we have tested the notion that decreased L-isoleucine uptake combined with increased L-isoleucine excretion will further improve high-yield strains that are currently used for the industrial-scale production of L-isoleucine. To examine the effect of the two carriers on L-isoleucine accumulation in L-isoleucine producer C. glutamicum YILW, we constructed a brnQ deletion mutant (C. glutamicum YILW?brnQ) and two brnFE overexpressors (C. glutamicum YILWpXMJ19brnFE and C. glutamicum YILW?brnQpXMJ19brnFE). Compared to the original strain, the efflux rate of the brnQ mutant increased from 19.0 to 23.6?nmol?min(-1) mg (dry wt)(-1) and its L-isoleucine titer increased from 154.3?mM (20.2?g?l(-1)) to 170.3?mM (22.3?g?l(-1)). The efflux rates of C. glutamicum YILWpXMJ19brnFE and C. glutamicum YILW?brnQpXMJ19brnFE were 33.5 and 39.1?nmol?min(-1) mg (dry wt)(-1), and their L-isoleucine production titers were 197.2?mM (25.9?g?l(-1)) and 221.0?mM (29.0?g?l(-1)), respectively. Our results suggest that modifications of the transport system could provide a promising avenue for further increasing L-isoleucine yield in the L-isoleucine producer.  相似文献   

7.
Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes as desired towards the optimal pathway usage predicted by in silico modeling. The final engineered C. glutamicum strain was able to produce lysine with a high yield of 0.55 g per gram of glucose, a titer of 120 g L(-1) lysine and a productivity of 4.0 g L(-1) h(-1) in fed-batch culture. The specific glucose uptake rate of the wild type could be completely maintained during the engineering process, providing a highly viable producer. For these key criteria, the genetically defined strain created in this study lies at the maximum limit of classically derived producers developed over the last fifty years. This is the first report of a rationally derived lysine production strain that may be competitive with industrial applications. The design-based strategy for metabolic engineering reported here could serve as general concept for the rational development of microorganisms as efficient cellular factories for bio-production.  相似文献   

8.
The amino acid L-serine is required for pharmaceutical purposes, and the availability of a sugar-based microbial process for its production is desirable. However, a number of intracellular utilization routes prevent overproduction of L-serine, with the essential serine hydroxymethyltransferase (SHMT) (glyA) probably occupying a key position. We found that constructs of Corynebacterium glutamicum strains where chromosomal glyA expression is dependent on Ptac and lacIQ are unstable, acquiring mutations in lacIQ, for instance. To overcome the inconvenient glyA expression control, we instead considered controlling SHMT activity by the availability of 5,6,7,8-tetrahydrofolate (THF). The pabAB and pabC genes of THF synthesis were identified and deleted in C. glutamicum, and the resulting strains were shown to require folate or 4-aminobenzoate for growth. Whereas the C. glutamicum DeltasdaA strain (pserACB) accumulates only traces of L-serine, with the C. glutamicum DeltapabABCDeltasdaA strain (pserACB), L-serine accumulation and growth responded in a dose-dependent manner to an external folate supply. At 0.1 mM folate, 81 mM L-serine accumulated. In a 20-liter controlled fed-batch culture, a 345 mM L-serine accumulation was achieved. Thus, an efficient and highly competitive process for microbial l-serine production is available.  相似文献   

9.
L-threonine can be made by the amino acid-producing bacterium Corynebacterium glutamicum. However, in the course of this process, some of the L-threonine is degraded to glycine. We detected an aldole cleavage activity of L-threonine in crude extracts with an activity of 2.2 nmol min(-1) (mg of protein)(-1). In order to discover the molecular reason for this activity, we cloned glyA, encoding serine hydroxymethyltransferase (SHMT). By using affinity-tagged glyA, SHMT was isolated and its substrate specificity was determined. The aldole cleavage activity of purified SHMT with L-threonine as the substrate was 1.3 micromol min(-1) (mg of protein)(-1), which was 4% of that with L-serine as substrate. Reduction of SHMT activity in vivo was obtained by placing the essential glyA gene in the chromosome under the control of P(tac), making glyA expression isopropylthiogalactopyranoside dependent. In this way, the SHMT activity in an L-threonine producer was reduced to 8% of the initial activity, which led to a 41% reduction in glycine, while L-threonine was simultaneously increased by 49%. The intracellular availability of L-threonine to aldole cleavage was also reduced by overexpressing the L-threonine exporter thrE. In C. glutamicum DR-17, which overexpresses thrE, accumulation of 67 mM instead of 49 mM L-threonine was obtained. This shows that the potential for amino acid formation can be considerably improved by reducing its intracellular degradation and increasing its export.  相似文献   

10.
Short-chain dehydrogenase/reductase homologues from Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C) show high sequence similarity to serine dehydrogenase from Agrobacterium tumefaciens. We cloned each gene encoding YdfG and YMR226C into E. coli JM109 and purified them to homogeneity from the E. coli clones. YdfG and YMR226C consist of four identical subunits with a molecular mass of 27 and 29 kDa, respectively. Both enzymes require NADP+ as a coenzyme and use l-serine as a substrate. Both enzymes show maximum activity at about pH 8.5 for the oxidation of l-serine. They also catalyze the oxidation of d-serine, l-allo-threonine, d-threonine, 3-hydroxyisobutyrate, and 3-hydroxybutyrate. The kcat/Km values of YdfG for l-serine, d-serine, l-allo-threonine, d-threonine, l-3-hydroxyisobutyrate, and d-3-hydroxyisobutyrate are 105, 29, 199, 109, 67, and 62 M?1 s?1, and those of YMR226C are 116, 110, 14600, 7540, 558, and 151 M?1 s?1, respectively. Thus, YdfG and YMR226C are NADP+-dependent dehydrogenases acting on 3-hydroxy acids with a three- or four-carbon chain, and l-allo-threonine is the best substrate for both enzymes.  相似文献   

11.
Xu  Guoqiang  Jin  Xuexia  Guo  Wen  Dou  Wenfang  Zhang  Xiaomei  Xu  Zhenghong 《Annals of microbiology》2015,65(2):929-935
The direct fermentative production of l-serine from renewable biomass using Corynebacterium glutamicum is attracting increasing attention. In this study, wild-type C. glutamicum SYPS-062 produced up to 6.65 ± 0.23 g/L l-serine; to further improve l-serine production, the serA gene was cloned, and the C-terminal domain of 3-phosphoglycerate dehydrogenase (PGDH) from this strain was truncated. When expressed in Escherichia coli, the resultant mutein SerAΔ197 showed a specific PGDH activity of 1.092 ± 0.05 U/mg protein, representing a decrease of 25.87 % from that encoded by serA, and was no longer sensitive to high concentrations of l-serine. When serA Δ591 was overexpressed in C. glutamicum SYPS-062, the activity of PGDH in C. glutamicum pJC1-tac-serA Δ591 increased by 47.72 %, and the resultant strain C. glutamicum pJC1-tac-serA Δ591 could accumulate 7.69 ± 0.22 g/L l-serine. Furthermore, when serA Δ591 was overexpressed in C. glutamicum SYPS-062ΔsdaA, the resultant strain could accumulate 8.84 ± 0.23 g/L l-serine at 102 h, and the yield of l-serine on cells (Y p/x) improved by 60 % when compared with that noted in the control. These results demonstrate that l-serine production in C. glutamicum SYPS-062 could be improved by overexpressing a C-terminal truncation of PGDH in combination with other genetic modifications.  相似文献   

12.
We found that Corynebacterium glutamicum ATCC 13032::argF extracellularly produced a large amount of D-ornithine when cultivated in a CGXII medium containing 1 mM L-arginine. This is the first report that C. glutamicum ATCC 13032 or its mutant produces a D-amino acid extracellularly. C. glutamicum ATCC 13032::argF produced 13 mM D-ornithine in 45 h of cultivation.  相似文献   

13.
Several d-amino acids have been identified in plants. However, the biosynthetic pathway to them is unclear. In this study, we cloned and sequenced a cDNA encoding a serine racemase from barley which contained an open reading frame encoding 337 amino acid residues. The deduced amino acid sequence showed significant identity to plant and mammalian serine racemases and contained conserved pyridoxal 5-phosphate (PLP)-binding lysine and PLP-interacting amino acid residues. The purified gene product catalyzed not only racemization of serine but also dehydration of serine to pyruvate. The enzyme requires PLP and divalent cations such as Ca(2+), Mg(2+), or Mn(2+), but not ATP, whereas mammalian serine racemase activity is increased by ATP. In addition to the results regarding the effect of ATP on enzyme activity and the phylogenetic analysis of eukaryotic serine racemases, the antiserum against Arabidopsis serine racemase did not form a precipitate with barley and rice serine racemases. This suggests that plant serine racemases represent a distinct group in the eukaryotic serine racemase family and can be clustered into monocot and dicot types.  相似文献   

14.
Threonine production in Escherichia coli threonine producer strains is enhanced by overexpression of the E. coli rhtB and rhtC genes or by heterologous overexpression of the gene encoding the Corynebacterium glutamicum threonine excretion carrier, thrE. Both E. coli genes give rise to a threonine-resistant phenotype when overexpressed, and they decrease the accumulation of radioactive metabolites derived from [(14)C] L-threonine. The evidence presented supports the conclusion that both RhtB and RhtC catalyze efflux of L-threonine and other structurally related neutral amino acids, but that the specificities of these two carriers differ substantially.  相似文献   

15.
The repression of the carAB operon encoding carbamoyl phosphate synthase leads to Lactobacillus plantarum FB331 growth inhibition in the presence of arginine. This phenotype was used in a positive screening to select spontaneous mutants deregulated in the arginine biosynthesis pathway. Fourteen mutants were genetically characterized for constitutive arginine production. Mutations were located either in one of the arginine repressor genes (argR1 or argR2) present in L. plantarum or in a putative ARG operator in the intergenic region of the bipolar carAB-argCJBDF operons involved in arginine biosynthesis. Although the presence of two ArgR regulators is commonly found in gram-positive bacteria, only single arginine repressors have so far been well studied in Escherichia coli or Bacillus subtilis. In L. plantarum, arginine repression was abolished when ArgR1 or ArgR2 was mutated in the DNA binding domain, or in the oligomerization domain or when an A123D mutation occurred in ArgR1. A123, equivalent to the conserved residue A124 in E. coli ArgR involved in arginine binding, was different in the wild-type ArgR2. Thus, corepressor binding sites may be different in ArgR1 and ArgR2, which have only 35% identical residues. Other mutants harbored wild-type argR genes, and 20 mutants have lost their ability to grow in normal air without carbon dioxide enrichment; this revealed a link between arginine biosynthesis and a still-unknown CO2-dependent metabolic pathway. In many gram-positive bacteria, the expression and interaction of different ArgR-like proteins may imply a complex regulatory network in response to environmental stimuli.  相似文献   

16.
The overexpression of fructose 1,6-bisphosphatase (FBPase) in Corynebacterium glutamicum leads to significant improvement of lysine production on different sugars. Amplified expression of FBPase via the promoter of the gene encoding elongation factor TU (EFTU) increased the lysine yield in the feedback-deregulated lysine-producing strain C. glutamicum lysCfbr by 40% on glucose and 30% on fructose or sucrose. Additionally formation of the by-products glycerol and dihydroxyacetone was significantly reduced in the PEFTUfbp mutant. As revealed by 13C metabolic flux analysis on glucose the overexpression of FBPase causes a redirection of carbon flux from glycolysis toward the pentose phosphate pathway (PPP) and thus leads to increased NADPH supply. Normalized to an uptake flux of glucose of 100%, the relative flux into the PPP was 56% for C. glutamicum lysCfbr PEFTUfbp and 46% for C. glutamicum lysCfbr. The flux for NADPH supply was 180% in the PEFTUfbp strain and only 146% in the parent strain. Amplification of FBPase increases the production of lysine via an increased supply of NADPH. Comparative studies with another mutant containing the sod promoter upstream of the fbp gene indicate that the expression level of FBPase relates to the extent of the metabolic effects. The overexpression of FBPase seems useful for starch- and molasses-based industrial lysine production with C. glutamicum. The redirection of flux toward the PPP should also be interesting for the production of other NADPH-demanding compounds as well as for products directly stemming from the PPP.  相似文献   

17.
Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose.  相似文献   

18.
The silkworm Bombyx mori contains high concentrations of free d-serine, an optical isomer of l-serine. To elucidate its function, we first investigated the localization of d-serine in various organs of silkworm larvae, pupae, and adult moths. Using immunohistochemical analysis with an anti-d-serine antibody, we found d-serine in the microvilli of midgut goblet and cylindrical cells and in peripheral matrix components of testicular and ovarian cells. By spectrophotometric analysis, d-serine was also found in the hemolymph and fat body. d-Alanine was not detected in the various organs by immunohistochemistry. Serine racemase, which catalyzes the inter-conversion of l- and d-serine, was found to co-localize with d-serine, and d-serine production from l-serine by intrinsic serine racemase was suggested. O-Phospho-l-serine is an inhibitor of serine racemase, and it was administered to the larvae to reduce the d-serine level. This reagent decreased the midgut caspase-3 level and caused a delay in spermatogenesis and oogenesis. The reagent also decreased mature sperm and egg numbers, suggesting d-serine participation in these processes. d-Serine administration induced an increase in pyruvate levels in testis, midgut, and fat body, indicating conversion of d-serine to pyruvate. On the basis of these results, together with our previous investigation of ATP biosynthesis in testis, we consider the possible involvement of d-serine in ATP synthesis for metamorphosis and reproduction.  相似文献   

19.
20.
Heterologous expression of a phytase gene (phyC) from Bacillus amyloliquefaciens DSM 7 enabled the growth of Corynebacterium glutamicum with phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate) as a new, sole source of phosphorus. Phytate was not used as a carbon source. During growth of the phyC-expressing amino acid (l-lysine)-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) with phytate as the source of phosphorus, merely a small, transient accumulation of inorganic phosphate was observed in the fermentation broth. At the later stages of fermentation, free inorganic phosphate from phytate degradation was no longer detectable. Growth and l-lysine production by the phytase-producing strain C. glutamicum ATCC 21253 (pWLQ2::phyC) in phytate medium did not differ significantly from control experiments with strain C. glutamicum ATCC 21253 (pWLQ2) conducted with an excess of inorganic phosphate, demonstrating that there was no phosphate limitation when phytate was used as the phosphorus source. Under the expression conditions employed, only part of PhyC was secreted to the culture broth by C. glutamicum, but this did not significantly affect growth or lysine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号