首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) transforms rodent fibroblasts and is expressed in most EBV-associated malignancies. LMP1 (transformation effector site 2 [TES2]/C-terminal activation region 2 [CTAR2]) activates NF-κB, p38, Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and interferon regulatory factor 7 (IRF7) pathways. We have investigated LMP1 TES2 genome-wide RNA effects at 4 time points after LMP1 TES2 expression in HEK-293 cells. By using a false discovery rate (FDR) of <0.001 after correction for multiple hypotheses, LMP1 TES2 caused >2-fold changes in 1,916 mRNAs; 1,479 RNAs were upregulated and 437 were downregulated. In contrast to tumor necrosis factor alpha (TNF-α) stimulation, which transiently upregulates many target genes, LMP1 TES2 maintained most RNA effects through the time course, despite robust and sustained induction of negative feedback regulators, such as IκBα and A20. LMP1 TES2-regulated RNAs encode many NF-κB signaling proteins and secondary interacting proteins. Consequently, many LMP1 TES2-regulated RNAs encode proteins that form an extensive interactome. Gene set enrichment analyses found LMP1 TES2-upregulated genes to be significantly enriched for pathways in cancer, B- and T-cell receptor signaling, and Toll-like receptor signaling. Surprisingly, LMP1 TES2 and IκBα superrepressor coexpression decreased LMP1 TES2 RNA effects to only 5 RNAs, with FDRs of <0.001-fold and >2-fold changes. Thus, canonical NF-κB activation is critical for almost all LMP1 TES2 RNA effects in HEK-293 cells and a more significant therapeutic target than previously appreciated.  相似文献   

2.
3.
4.
5.
Recent studies have demonstrated that microglial hyperactivation-mediated neuroinflammation is involved in the pathogenesis of several neurodegenerative diseases. Thus, inhibiting microglial production of the neurotoxic mediator tumor necrosis factor-α (TNF-α) is considered a promising strategy to protect against neurodegeneration. Here, we investigated the inhibitory effect of licorice-derived dehydroglyasperin C (DGC) on lipopolysaccharide (LPS)-induced TNF-α production and inflammation-mediated neurodegeneration. We found that DGC pre-treatment attenuated TNF-α production in response to LPS stimulation of BV-2 microglia. DGC pre-treatment attenuated LPS-induced inhibitor of κB-α (IκB-α) and p65 phosphorylation and decreased the DNA binding activity of nuclear factor-κB (NF-κB). DGC pre-treatment also inhibited LPS-mediated phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinase (ERK). Interestingly, DGC treatment of BV-2 microglia significantly increased MAPK phosphatase 1 (MKP-1) mRNA and protein expression, which is a phosphatase of p38 MAPK and ERK, suggesting that the DGC-mediated increase in MKP-1 expression might inhibit LPS-induced MAPKs and NF-κB activation and further TNF-α production. We also found that LPS-mediated microglial neurotoxicity can be attenuated by DGC. The addition of conditioned media (CM) from DGC- and LPS-treated microglia to neurons helped maintain healthy cell body and neurite morphology and increased the number of microtubule-associated protein 2-positive cells and the level of synaptophysin compared to treatment with CM from LPS-treated microglia. Taken together, these data suggest that DGC isolated from licorice may inhibit microglia hyperactivation by increasing MKP-1 expression and acting as a potent anti-neurodegenerative agent.  相似文献   

6.
为了探讨EB病毒潜伏膜蛋白1(LMP1)的致瘤机制,对鼻咽癌中LMP1激活重要的核转录因子NF-κB机制进行了研究.首先,采用免疫共沉淀-蛋白质印迹在稳定表达LMP1的鼻咽癌细胞系HNE2-LMP1中证实LMP1与TRAF1,2,3结合形成免疫共沉淀复合物,进一步以野生型LMP1及其三种突变体的鼻咽癌细胞系LMP1(野生型,wt)、HNE2-LMP1 del187~351(CTAR1缺失型)、HNE2-LMP1(1~231)(CTAR2缺失型)、HNE2-LMP1(1~187)(羧基端胞浆区缺失型)、HNE2-pSG5(空白载体型)为材料,结合NF-κB报道基因质粒(pGL2-NF-κB-luc)的荧光素酶活性表达分析NF-κB的活性,证实:较之母细胞, 野生型LMP1活化NF-κB达13.8倍, LMP1(1~187)几乎不活化NF-κB,LMP1(1~231)活化NF-κB达4.9倍, LMP1(del187~351)活化NF-κB达9.1倍;TRAF1过表达升高LMP1(wt)及LMP1(1~231)介导的NF-κB活性,而对LMP1(del 187~351)活化NF-κB无影响;TRAF3过表达或TRAF3负显性突变体抑制LMP1(wt)及LMP1(1~231)介导的NF-κB活性,而不影响LMP1(del 187~351)活化NF-κB; TRAF2过表达升高LMP1(wt)、LMP1 (1~231)及LMP1(del 187~351)介导的NF-κB活性.这些结果表明:鼻咽癌中LMP1通过TRAF1、TRAF2或TRAF3调控NF-κB,TRAF1和TRAF3主要通过CTAR1发挥作用,TRAF2的作用主要是通过CTAR1和CTAR2介导的.  相似文献   

7.
8.
Plasminogen activator inhibitor (PAI)-1 is a major fibrinolytic inhibitor. High PAI-1 is associated with increased renal and cardiovascular disease risk. Previous studies demonstrated PAI-1 down-regulation by 1,25-dihydroxyvitamin D? (1,25(OH)?D?), but the molecular mechanism remains unknown. Here we show that exposure of mouse embryonic fibroblasts to TNFα or LPS led to a marked induction of PAI-1, which was blunted by 1,25(OH)?D?, NF-κB inhibitor or p65 siRNA, suggesting the involvement of NF-κB in 1,25(OH)?D?-induced repression. In mouse Pai-1 promoter a putative cis-κB element was identified at -299. EMSA and ChIP assays showed that TNF-α increased p50/p65 binding to this κB site, which was disrupted by 1,25(OH)?D?. Luciferase reporter assays showed that PAI-1 promoter activity was induced by TNFα or LPS, and the induction was blocked by 1,25(OH)?D?. Mutation of the κB site blunted TNFα, LPS or 1,25(OH)?D? effects. 1,25(OH)?D? blocked IκBα degradation and arrested p50/p65 nuclear translocation. In mice LPS stimulated PAI-1 expression in the heart and macrophages, and the stimulation was blunted by pre-treatment with a vitamin D analog. Together these data demonstrate that 1,25(OH)?D? down-regulates PAI-1 by blocking NF-κB activation. Inhibition of PAI-1 production may contribute to the reno- and cardio-protective effects of vitamin D.  相似文献   

9.
10.
11.
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.  相似文献   

12.
Yoo HJ  Byun HJ  Kim BR  Lee KH  Park SY  Rho SB 《Cellular signalling》2012,24(7):1471-1477
Recent studies have shown DAPk as a molecular modulator induced by the second messenger, responsible for controlling cell destiny decisions, but the detailed mechanism mediating the role of DAPk1 during cell death is still not fully understood. In this present report, we attempted to characterize the effects of TNF-α and INF-γ on DAPk1 in human ovarian carcinoma cell lines, OVCAR-3. Both TNF-α and INF-γ significantly induce DAPk1 levels in a time-dependent manner. At the same time, they both arrested cell cycle progression in the G(0)-G(1) and G2/M phase, down-regulated cyclin D1, CDK4 and NF-κB expression, while also up-regulating p27 and p16 expression. Subsequently, the efficacy of the combined treatment with DAPk1 was investigated. In the presence of DAPk1, TNF-α or INF-γ-induced apoptosis was additively increased, while TNF-α or INF-γ-induced NF-κB activity was inhibited. Conversely, TNF-α or INF-γ-dependent NF-κB activity was further enhanced by the inhibition of DAPk1 with its specific siRNA. The activity of NF-κB was dependent on the level of DAPk1, indicating the requirement of DAPk1 for the activation of NF-κB. Low levels of DAPk1 expression were frequently observed in different human patient's tissue and cancer cell lines compared to normal samples. In addition, over-expression of DAPk1 from either TNF-α or INF-γ-treatment cells suppressed the anti-apoptosis protein XIAP as well as COX-2 and ICAM-1, more than control. Taken together, our data findings suggest that DAPk1 can mediate the pro-apoptotic activity of TNF-α and INF-γ via the NF-κB signaling pathways.  相似文献   

13.
本研究检测了绝经后骨质疏松症妇女的肿瘤坏死因子-α(TNF-α)和雌激素水平,并探讨了TNF-α对破骨前体细胞RAW264.7中破骨细胞标志物核因子κB受体激活因子(nuclear factor kappa-B, RANK)、组织蛋白酶K (Cathepsin K, CTSK)和凝血酶受体激活肽(thrombin receptor activating peptide, TRAP)以及核因子-κB (NF-κB)亚基(p65)和NF-κB抑制蛋白(IκBα)的影响。研究结果表明,绝经后骨质疏松症患者的TNF-α水平显著升高,而雌二醇水平显著降低。核因子κB受体激活因子配体(receptor activator for NF-κBligand, RANKL)处理1周后,破骨前体细胞RAW264.7中破骨细胞标志物RANK、CTSK和TRAP的mRNA和蛋白高度表达。与RANKL对照组相比,TNF-α处理可上调RANK、CTSK和TRAP m RNA的表达。但是,仅TNF-α不能诱导培养的RAW264.7细胞分化为破骨细胞成。TNF-α以剂量依赖性方式诱导NF-κB亚基p65和IκBα磷酸化,而NF-κB抑制剂处理则有效降低了RANK和TRAP的表达。本研究结论表明,绝经后骨质疏松症中TNF-α通过激活NF-κB来促进RANKL诱导的破骨细胞形成。  相似文献   

14.
目的:研究肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)刺激大鼠骨髓间充质干细胞(marrow-derived mesenchymalstem cells,MSCs)的作用机制。方法:采取大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并由牛垂体提取物(PEX)诱导扩增传代培养出骨髓间充质干细胞(MSCs)。经形态学和流式细胞仪检测MSCs表面标志物鉴定后,用TNF-α刺激骨髓间充质干细胞(MSCs),通过酶联免疫吸附剂测定法(enzyme linked immunosorbent assay,ELISA)观察比较不同组别细胞的生长因子分泌和蛋白印迹法(western blot)来观察细胞中蛋白的变化。结果:①经形态学观察和流式细胞仪检测MSCs表面标志物鉴定,提示骨髓间充质干细胞的培养成功。②无TNF-α刺激组与TNF-α刺激组比较,TNF-α刺激组的生长因子分泌显著性增加,而通过磷酸化IκB的表达量显著性增加提示NF-κB被激活(P〈0.05);同时TNF-α刺激组与TNF-α+NF-κB抑制剂组比较,TNF-α+NF-κB抑制剂组的生长因子分泌显著降低,而通过磷酸化IκB的表达量显著减少提示NF-κB的活性被抑制(P〈0.05)。结论:NF-κB对TNF-α刺激下的骨髓间充质干细胞分泌生长因子有关键性作用。  相似文献   

15.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

16.
17.
18.
Inflammatory cytokines, such as interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α), induce the intracellular signaling pathway leading to the activation of nuclear factor κB (NF-κB). A series of eudesmane-type sesquiterpene lactones possessing an α-methylene γ-lactone group and/or an α-bromo ketone group were synthesized and evaluated for their inhibitory effects on the NF-κB-dependent gene expression and signaling pathway. Our present study reveals that eudesmane-type α-methylene γ-lactones and α-bromo ketones inhibit multiple steps in the NF-κB signaling pathway induced by IL-1α and TNF-α.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号