首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
U Ryde 《Biophysical journal》1999,77(5):2777-2787
The relative energies of different coordination modes (bidentate, monodentate, syn, and anti) of a carboxylate group bound to a zinc ion have been studied by the density functional method B3LYP with large basis sets on realistic models of the active site of several zinc proteins. In positively charged four-coordinate complexes, the mono- and bidentate coordination modes have almost the same energy (within 10 kJ/mol). However, if there are negatively charged ligands other than the carboxylate group, the monodentate binding mode is favored. In general, the energy difference between monodentate and bidentate coordination is small, 4-24 kJ/mol, and it is determined more by hydrogen-bond interactions with other ligands or second-sphere groups than by the zinc-carboxylate interaction. Similarly, the activation energy for the conversion between the two coordination modes is small, approximately 6 kJ/mol, indicating a very flat Zn-O potential surface. The energy difference between syn and anti binding modes of the monodentate carboxylate group is larger, 70-100 kJ/mol, but this figure again strongly depends on interactions with second-sphere molecules. Our results also indicate that the pK(a) of the zinc-bound water ligand in carboxypeptidase and thermolysin is 8-9.  相似文献   

3.
A combined quantum mechanical and molecular mechanical Monte Carlo simulation method was used to determine the free energy of binding between tetramethylammonium ion (TMA+) and benzene in water. The computed free energy as a function of distance (the potential of mean force) has two minima that represent contact and solvent-separated complexes. These species are separated by a broad barrier of about 3 kJ/mol. The results are in good accord with experimental data and suggest that TMA+ binds to benzene more favorably than to chloride ion, with an association constant of about 0.8 M-1.  相似文献   

4.
Relative free energies of binding to the ligand-binding domain of the estrogen receptor have been calculated for a series of 17 hydroxylated polychlorinated biphenyls. Because traditional thermodynamic integration or perturbation approaches are hardly feasible for these numbers of compounds, the one-step perturbation approach is applied and is shown to yield accurate results based on only two 2-ns molecular dynamics simulations of an unphysical, judiciously chosen, reference state. The mean absolute difference between the calculated and experimental binding free energies for the 17 compounds is 3.4 kJ/mol, which illustrates the accuracy of the GROMOS biomolecular force field used. Excluding the three largest ligands from the comparison reduces the deviation to 2.0 kJ/mol (i.e., < k(B)T). Apart from the relative free energy, structural information about the binding mode and binding orientation for every compound can also be extracted from the simulation, showing that a ligand bound to its receptor cannot be represented by a single conformation, but it samples an ensemble of different orientations.  相似文献   

5.
Molecular dynamics simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) free energy calculations were used to study the energetics of the binding of progesterone (PRG) and 5 beta-androstane-3,17-dione (5AD) to anti-PRG antibody DB3. Although the two steroids bind to DB3 in different orientations, their binding affinities are of the same magnitude, 1 nM for PRG and 8 nM for 5AD. The calculated relative binding free energy of the steroids, 8.8 kJ/mol, is in fair agreement with the experimental energy, 5.4 kJ/mol. In addition, computational alanine scanning was applied to study the role of selected amino acid residues of the ligand-binding site on the steroid cross-reactivity. The electrostatic and van der Waals components of the total binding free energies were found to favour more the binding of PRG, whereas solvation energies were more favourable for the binding of 5AD. The differences in the free energy components are due to the binding of the A rings of the steroids to different binding pockets: PRG is bound to a pocket in which electrostatic antibody-steroid interactions are dominating, whereas 5AD is bound to a pocket in which van der Waals and hydrophobic interactions dominate.  相似文献   

6.
Glutamate dehydrogenase (GDH) is a target for treating insulin‐related disorders, such as hyperinsulinism hyperammonemia syndrome. Modeling native ligand binding has shown promise in designing GDH inhibitors and activators. Our computational investigation of the nicotinamide adenine diphosphate hydride (NADH)/adenosine diphosphate (ADP) site presented in this paper provides insight into the opposite allosteric effects induced at a single site of binding inhibitor NADH versus activator ADP to GDH. The computed binding free‐energy difference between NADH and ADP using thermodynamic integration is ?0.3 kcal/mol, which is within the ?0.275 and ?1.7 kcal/mol experimental binding free‐energy difference range. Our simulations show an interesting model of ADP with dissimilar binding conformations at each NADH/ADP site in the GDH trimer, which explains the poorly understood strong binding but weak activation shown in experimental studies. In contrast, NADH showed similar inhibitory binding conformations at each NADH/ADP site. The structural analysis of the important residues in the NADH/ADP binding site presented in this paper may provide potential targets for mutation studies for allosteric drug design.  相似文献   

7.
Human apurinic/apyrimidinic (AP) endonuclease (hAPE) initiates the repair of an abasic site (AP site). To gain insight into the mechanisms of damage recognition of hAPE, we conducted surface plasmon resonance spectroscopy to study the thermodynamics and kinetics of its interaction with substrate DNA containing an abasic site (AP DNA). The affinity of hAPE binding toward DNA increased as much as 6-fold after replacing a single adenine (equilibrium dissociation constant, K(D), 5.3 nm) with an AP site (K(D), 0.87 nm). The enzyme-substrate complex formation appears to be thermodynamically stabilized and favored by a large change in Gibbs free energy, DeltaG degrees (-50 kJ/mol). The latter is supported by a high negative change in enthalpy, DeltaH degrees (-43 kJ/mol) and also positive change in entropy, DeltaS degrees (24 J/(K mol)), and thus the binding process is spontaneous at all temperatures. Analysis of kinetic parameters reveals small enthalpy of activation for association, DeltaH degrees++(ass) (-17 kJ/mol), and activation energy for association (E(a), -14 kJ/mol) when compared with the enthalpy of activation for dissociation, DeltaH degrees++(diss) (26 kJ/mol), and activation energy in the reverse direction (E(d), 28 kJ/mol). Furthermore, varying concentration of KCl showed an increase in binding affinity at low concentration but complete abrogation of the binding at higher concentration, implying the importance of hydrophobic, but predominantly ionic, forces in the Michaelis-Menten complex formation. Thus, low activation energy and the enthalpy of activation, which are perhaps a result of dipole-dipole interactions, play critical roles in AP site binding of APE.  相似文献   

8.
Interactions between transmembrane (TM) peptides are important in biophysical chemistry, but there are few studies assessing atomistic simulation parameters concerning the energetics of interactions of TM helical peptides. Our potential of mean force analysis using OPLS-AA protein/Berger lipid force fields (FFs) shows that the dimerisation energy of (AALALAA)3 helical peptides in the dioleoylphosphatidylcholine bilayer is ?4.4 kJ/mol, which was much smaller than the reported experimental value (?12.7 kJ/mol), thus calling for improvement of parameters of the combined FFs. As each of the FFs has been independently developed, we then tested the effects of downscaling the Lennard-Jones (LJ) energy terms between the OPLS-AA atoms and Berger lipid atoms, preserving the parameters within each FF. A 0.9-fold rescaling of the LJ energies was found to render the dimerisation energy close to the experimental value. Solvation of backbone atoms as well as side chain atoms in lipids is crucial for the TM helix interaction. In similar analyses, GROMOS 53A6 FF exhibited as weak dimerisation propensity (~?5.2 kJ/mol) as OPLS-AA/Berger, but CHARMM36 showed relatively accurate propensity (~?9.9 kJ/mol). Challenges and strategies in rendering the TM interaction energy realistic within the framework of current FFs are discussed.  相似文献   

9.
Pei J  Wang Q  Liu Z  Li Q  Yang K  Lai L 《Proteins》2006,62(4):934-946
We have developed a new docking method, Pose-Sensitive Inclined (PSI)-DOCK, for flexible ligand docking. An improved SCORE function has been developed and used in PSI-DOCK for binding free energy evaluation. The improved SCORE function was able to reproduce the absolute binding free energies of a training set of 200 protein-ligand complexes with a correlation coefficient of 0.788 and a standard error of 8.13 kJ/mol. For ligand binding pose exploration, a unique searching strategy was designed in PSI-DOCK. In the first step, a tabu-enhanced genetic algorithm with a rapid shape-complementary scoring function is used to roughly explore and store potential binding poses of the ligand. Then, these predicted binding poses are optimized and compete against each other by using a genetic algorithm with the accurate SCORE function to determine the binding pose with the lowest docking energy. The PSI-DOCK 1.0 program is highly efficient in identifying the experimental binding pose. For a test dataset of 194 complexes, PSI-DOCK 1.0 achieved a 67% success rate (RMSD < 2.0 A) for only one run and a 74% success rate for 10 runs. PSI-DOCK can also predict the docking binding free energy with high accuracy. For a test set of 64 complexes, the correlation between the experimentally observed binding free energies and the docking binding free energies for 64 complexes is r = 0.777 with a standard deviation of 7.96 kJ/mol. Moreover, compared with other docking methods, PSI-DOCK 1.0 is extremely easy to use and requires minimum docking preparations. There is no requirement for the users to add hydrogen atoms to proteins because all protein hydrogen atoms and the flexibility of the terminal protein atoms are intrinsically taken into account in PSI-DOCK. There is also no requirement for the users to calculate partial atomic charges because PSI-DOCK does not calculate an electrostatic energy term. These features are not only convenient for the users but also help to avoid the influence of different preparation methods.  相似文献   

10.
The effects of removal of the tyrosine 96 hydrogen bond on the stability and conformational events of cytochrome P-450cam are presented in this communication. Hydrostatic pressure has been used as a tool to perturbe the structure leading to the formation of cytochrome P-420, an inactivated but soluble and undenatured form of the enzyme. We show that the spin transition of cytochrome P-450cam, which is known to be influenced by hydrostatic pressure, is affected by this single mutation. The free energy of stabilisation of native substrate-free cytochrome P-450cam is not affected by the removal of the tyrosine 96 hydrogen bond via mutagenesis to phenylalanine, whereas the substrate-bound protein shows a difference of 21 kJ/mol. These results, as well as an observed 110 ml/mol difference for the volume of the inactivation reaction between substrate-bound native and mutant proteins, have been interpreted in terms of a more hydrated heme pocket for the site-directed mutant at position 96 compared to the wild-type protein where camphor is tightly bound via the tyrosine 96 hydrogen bond and water excluded from the active site.  相似文献   

11.
Dodson ML  Walker RC  Lloyd RS 《PloS one》2012,7(2):e31377
In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics-molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water-independent enzyme-catalyzed reaction had a bias-corrected Jarzynski-average barrier height of approximately (6.5 kcal mol(-1) (27.2 kJ mol(-1)) for the carbinolamine formation reaction and 44.5 kcal mol(-1) (186 kJ mol(-1)) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately 15 kcal mol(-1) (62.8 kJ mol(-1)) in the forward (formation) reaction and 19 kcal mol(-1) (79.5 kJ mol(-1)) for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water-independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N-terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N-terminal amine.  相似文献   

12.
Hydrophobic effects on binding of ribonuclease T1 to guanine bases of several ribonucleotides have been proved by mutating a hydrophobic residue at the recognition site and by measuring the effect on binding. Mutation of a hydrophobic surface residue to a more hydrophobic residue (Tyr45----Trp) enhances the binding to ribonucleotides, including mononucleotide inhibitor and product, and a synthetic substrate-analog trinucleotide as well as the binding to dinucleotide substrates and RNA. Enhancements on binding to non-substrate ribonucleotides by the mutation have been observed with free energy changes ranging from -2.2 to -3.9 kJ/mol. These changes are in good agreement with that of substrate binding, -2.3 kJ/mol, which is calculated from Michaelis constants obtained from kinetic studies. It is shown, by comparing the observed and calculated changes in binding free energy with differences in the observed transfer free energy changes of the amino acid side chains from organic solvents to water, that the enhancement observed on guanine binding comes from the difference in the hydrophobic effects of the side chains of tyrosine and tryptophan. Furthermore, a linear relationship between nucleolytic activities and hydrophobicity of the residues (Ala, Phe, Tyr, Trp) at position 45 is observed. The mutation could not change substantially the base specificity of RNase T1, which exhibits a prime requirement for guanine bases of substrates.  相似文献   

13.
A calorimetric study has been made of the interaction between the lac repressor and isopropyl-1-thio-beta-D-galactopyranoside (IPTG). The buffer-corrected enthalpy of reaction at 25 degrees C was found to be -15.6, -24.7, -4.6 kJ/mol of bound IPTG at pH 7.0, pH 8.1, and pH 9.0, respectively. This large range of enthalpy values is in contrast to a maximum difference in the free energy of the reaction of only 1.5 kJ/mol of bound IPTG between these pH values. The reaction was found by calorimetric measurements in different buffers to be accompanied by an uptake of 0.29 mol of protons/mol of bound IPTG at pH 8.1. The pH dependency of the reaction enthalpy suggests differences in the extent of protonation of the binding site and the involvement of H bonding with IPTG. The lack of strong hydrophobic contributions in the IPTG binding process is revealed by the absence of any determinable heat capacity change for the reaction at pH 7.0. The presence of phosphate buffer significantly alters the enthalpy of IPTG binding at higher pH values, but has little effect upon the binding constant. This implies that highly negative phosphate species change the nature of the IPTG binding site without any displacement of phosphate upon IPTG binding.  相似文献   

14.
The drying of reduced glutathione from a series of aqueous–ethanol binary solutions at 300 K (below human body temperature) and 330 K (above human body temperature) was investigated in detail by steered molecular simulation and an umbrella sampling method with the Gromacs software package and Gromos96(53a6) united atomic force field. The results show that electrostatic interactions between glutathione and solvent represent the main resistance to drying. When the aqueous solution was gradually changed to pure ethanol, the energy of electrostatic interaction between glutathione and solvent molecules increased by 445.088 kJ/mol, and the drying potential of mean force (PMF) free energy also fell by 253.040 kJ/mol. However, an increase in temperature from 300 to 330 K in the aqueous solution only results in an increase of 23.013 kJ/mol in electrostatic interaction energy and a decrease of 34.956 kJ/mol in drying PMF free energy. Furthermore, we show that hydrogen bonding is the major form of electrostatic interaction involved, and directly affects the drying of glutathione. Therefore, choosing water-miscible solvents that minimise hydrogen-bond formation with glutathione will enhance its drying rate, and this is likely to be more efficient than increasing the temperature of the process. Thus, a power-saving technology can be used to produce the high bioactivity medicines.  相似文献   

15.
This paper addresses the similarities and differences in the topology of the catalytic centres of human liver cytosolic beta-glucosidase and placental lysosomal glucocerebrosidase, and utilizes well-documented reversible active-site-directed inhibitors. This comparative kinetic study was performed mainly to decipher the chemical and structural nature of the active site of the cytosolic beta-glucosidase, whose physiological function is unknown. Specifically, analysis of the effects of a family of alkyl beta-glucosides consistently displayed 100-250-fold lower inhibition constants with the cytosolic broad-specificity beta-glucosidase compared with the placental glucocerebrosidase; for example, with octyl beta-D-glucoside the Ki values were 10 microM and 1490 microM for the cytosolic and lysosomal beta-glucosidases respectively. Furthermore the higher affinity of the cytosolic beta-glucosidase than glucocerebrosidase for the amphipathic alkyl beta-D-glucosides was validated by the greater increase in the free energy of binding with increasing alkyl chain length [delta delta G0 (K,)/CH2: lysosomal enzyme, 2.01 kJ/mol (480 cal/mol); cytosolic enzyme, 3.05 kJ/mol (730 cal/mol)]. The implications of the presence of highly non-polar domains in the active site of the cytosolic beta-glucosidase are discussed with regard to its potential physiological substrates.  相似文献   

16.
We present the results of free energy perturbation calculations on binding and catalysis of a tetrapeptide substrate, acetyl-Phe-Ala-Ala-Phe-NMe, by native subtilisin BPN' and a subtilisin BPN' mutant (Thr220----Ala220). The calculated difference in the free energy of binding was 0.70 +/- 0.72 kcal/mol. The calculated difference in the free energy of catalysis was 1.48 +/- 0.89 kcal/mol. These calculated values compare well with the experimental values in which another substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, was used. These findings suggest that Thr220 is more important for catalysis than substrate binding.  相似文献   

17.
J Wang  R Dixon  P A Kollman 《Proteins》1999,34(1):69-81
The binding of 14 biotin analogues to avidin is examined to evaluate the viability of calculating binding free energy based on molecular dynamics (MD) trajectories. Two approaches were investigated in this work. The first one uses the linear interaction energy approximation, while the other approach utilizes the interaction free energy. The results obtained from these two methods were found to correlate well with the experimental binding free energy data for 10 out of 14 ligands. For the other four ligands, both methods overestimate their binding strength by more than 7 kcal/mol. Free energy calculations using the thermodynamic integration method are employed to understand this overestimation. The effect of protein flexibility on binding free energy calculation and the effect of charged or neutral ligands on the calculated results are discussed. MD simulations are shown to be able to provide insight into the interactions occurring in the active site and the origins of variations in binding free energy.  相似文献   

18.
Molecular dynamics simulation and free energy perturbation techniques have been used to study the relative binding free energies of the designed mechanism-based pterins, 8-methylpterin and 6,8-dimethylpterin, to dihydrofolate reductase (DHFR), with co-factor nicotinamide adenine dinucleotide phosphate (NADPH). The calculated free energy differences suggest that DHFR.NADPH.6,8-dimethylpterin is thermodynamically more stable than DHFR.NADPH.8-methylpterin by 2.4 kcal/mol when the substrates are protonated and by 1.3 kcal/mol when neutral. The greater binding strength of 6,8-dimethylpterin may be attributed largely to hydration effects. In terms of an appropriate model for the pH-dependent kinetic mechanism, these differences can be interpreted consistently with experimental data obtained from previous kinetic studies, i.e., 6,8-dimethylpterin is a more efficient substrate of vertebrate DHFRs than 8-methylpterin. The kinetic data suggest a value of 6.6 ± 0.2 for the pKa of the active site Glu-30 in DHFR.NADPH. We have also used experimental data to estimate absolute values for thermodynamic dissociation constants of the active (i.e., protonated) forms of the substrates: these are of the same order as for the binding of folate (0.1–10 μM). The relative binding free energy calculated from the empirically derived dissociation constants for the protonated forms of 8-methylpterin and 6,8-dimethylpterin is 1.4 kcal/mol, a value which compares reasonably well with the theoretical value of 2.4 kcal/mol. © 1993 Wiley-Liss, Inc.  相似文献   

19.
We present a calculation of the relative changes in binding free energy between the complex of ribonuclease T1 (RNase Tr) with its inhibitor 2'-guanosine monophosphate (2'GMP) and that of RNase T1-2'-adenosine monophosphate (2'AMP) by means of a thermodynamic perturbation method implemented with molecular dynamics. Using the available crystal structure of the RNase T1-2'GMP complex, the structure of the RNase T1-2'AMP complex was obtained as a final structure of the perturbation calculation. The calculated difference in the free energy of binding (delta delta Gbind) was 2.76 kcal/mol. This compares well with the experimental value of 3.07 kcal/mol. The encouraging agreement in delta delta Gbind suggests that the interactions of inhibitors with the enzyme are reasonably represented. Energy component analyses of the two complexes reveal that the active site of RNase T1 electrostatically stabilizes the binding of 2'GMP more than that of 2'AMP by 44 kcal/mol, while the van der Waals' interactions are similar in the two complexes. The analyses suggest that the mutation from Glu46 to Gln may lead to a preference of RNase T1 for adenine in contrast to the guanine preference of the wild-type enzyme. Although the molecular dynamics equilibration moves the atoms of the RNase T1-2'GMP system about 0.9 A from their X-ray positions and the mutation of the G to A in the active site increases the deviation from the X-ray structure, the mutation of the A back to G reduces the deviation. This and the agreement found for delta delta Gbind suggest that the molecular dynamics/free energy perturbation method will be useful for both energetic and structural analysis of protein-ligand interactions.  相似文献   

20.
AXL kinase is an attractive cancer target for drug design and it is involved in different cancers. A set of molecule databases with 1072 secondary metabolites from seaweeds were screened against the AXL kinase active site and eight molecules were shortlisted for further studies. From the docking analysis of the complexes, four molecules GA011, BE005, BC010, and BC005 are showing prominent binging. From the 100 ns of molecular dynamics simulations and ligand-bound complex MM-PBSA free energy analysis, two molecules BC010 (ΔG = −135.38 kJ/mol) and BE005 (ΔG = −141.72 kJ/mol) are showing molecule stability in the active site also showing very strong binding free energies. It suggests these molecules could be the potent molecules for AXL kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号