首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly purified rat and cow brain synaptic vesicles contain major proteins with molecular weights of approximately 74,000, 60,000, 57,000, 40,000, 38,000, and 34,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The presence of the major proteins on synaptic vesicles was confirmed by immunoprecipitation of intact rat brain synaptic vesicles with a synaptic vesicle-specific monoclonal antibody. The 40,000-Mr protein appeared to be identical to the 38,000-Mr integral membrane glycoprotein, p38 or synaptophysin, previously identified as a major component of mammalian synaptic vesicles. The isoelectric point of the 75,000-Mr proteins from either rat or cow brain synaptic vesicles is 5.0, and the pI of the 57,000-Mr protein is approximately 5.1 in both species. The similarity in size and charge of several major proteins in rat and cow synaptic vesicles suggests a high degree of structure conservation of these proteins in diverse mammalian species and raises the possibility that a set of functions common to most or all mammalian synaptic vesicles is mediated by these proteins.  相似文献   

2.
Purification of synaptic vesicles directly from homogenates of mammalian brain is compared with a classical method based on osmotic lysis of brain synaptosomes. The direct method affords increased yield and purity of synaptic vesicles prepared under isoosmotic conditions. Antigen SV2 and the antigens (primarily synaptophysin) recognized by rabbit antiserum R10, raised to purified rat brain synaptic vesicles, are localized specifically on approximately 40-nm-diameter microsomal vesicles from rat brain. Rat brain synaptic vesicles have equilibrium densities of approximately 1.11 g/ml on Nycodenz density gradients, 1.12 g/ml on glycerol/Nycodenz, and 1.07 g/ml on Ficoll gradients. Both SV2 and the R10 antigens are enriched approximately 50-fold in purified rat brain synaptic vesicles. Synaptic vesicles purified from rat or cow brain show active uptake of [3H]norepinephrine that is reserpine sensitive and dependent on ATP and Mg2+. Synaptic vesicles exhibiting [3H]norepinephrine uptake comigrate with approximately 40-nm-diameter synaptic vesicles carrying SV2 or R10 antigens during permeation chromatography. After the Sephacryl S-1000 chromatography step, [3H]-norepinephrine uptake activity is purified approximately 90-fold. Highly purified brain synaptic vesicles should facilitate studies at the molecular level of the roles of these organelles in neurotransmission at mammalian synapses.  相似文献   

3.
Dynamic Storage of Dopamine in Rat Brain Synaptic Vesicles In Vitro   总被引:2,自引:0,他引:2  
Abstract: The dynamics of catecholamine storage were studied in highly purified, small synaptic vesicles from rat brain both during active uptake or after inhibiting uptake with reserpine, tetrabenazine, or removal of external dopamine. To assess turnover during active uptake, synaptic vesicles were allowed to accumulate [3H]dopamine ([3H]DA) for ~10 min and then diluted 20-fold into a solution containing unlabeled DA under conditions such that active uptake could continue. After dilution, [3H]DA was lost with single exponential kinetics at a half-time of ~4 min at 30°C in 8 mM Cl? medium, in which both voltage and H+ gradients are present in the vesicles. In 90 mM Cl? medium, in which high H+ and Cl? gradients but no voltage gradient are present, [3H]DA escaped at a half-time of ~7 min. In both high and low Cl? media, ~40% of [3H]DA efflux was blocked by reserpine or tetrabenazine. The residual efflux also followed first-order kinetics. These results indicate that two efflux pathways were present, one dependent on DA uptake (and thus on the presence of external DA) and the other independent of uptake, and that both pathways function regardless of the type of electrochemical H+ gradient in the vesicles. The presence of both uptake-dependent and -independent efflux was observed in experiments using DA-free medium, instead of uptake inhibitors, to prevent uptake. Uptake-independent efflux showed molecular selectivity for catecholamines; [14C]DA was lost about three times faster than [3H]norepinephrine after adding tetrabenazine directly (without dilution) to vesicles that had taken up comparable amounts of each amine. In addition, the first-order rate constant for uptake-independent efflux showed little change over a 60-fold range of internal DA concentrations, which suggests that this pathway had a high transport capacity. All efflux was blocked at 0°C, suggesting that efflux did not occur through a large pore. There was little or no change in the proton gradient in synaptic vesicles, monitored by [14C]methylamine equilibration, during the experimental manipulations used here. Thus, the driving force for catecholamine uptake remained approximately constant. The physiological role of uptake-independent efflux could be to allow the monoamine content of synaptic vesicles to be regulated over a time range of minutes and, thereby, control the amount released by exocytosis. These results imply that catecholamines turn over with a half-time of minutes during active uptake by brain synaptic vesicles in vitro.  相似文献   

4.
Uptake of Glycine into Synaptic Vesicles Isolated from Rat Spinal Cord   总被引:1,自引:0,他引:1  
Glycine was taken up by a synaptic vesicle fraction from spinal cord in a Mg-ATP-dependent manner. The accumulation of glycine was inhibited by carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and nigericin, agents known to destroy the proton gradient across the vesicle membrane. Vesicular uptake of glycine was clearly different from synaptosomal uptake, with respect to both the affinity constant and the effect of Na+, ATP, CCCP, and temperature. Oligomycin and strychnine did not inhibit the vesicular uptake, showing that neither mitochondrial H(+)-ATPase nor binding to strychnine-sensitive glycine receptors was involved. It is suggested that the vesicular uptake of glycine is driven by a proton gradient generated by a Mg2(+)-ATPase. A low concentration of Cl- had little effect on the uptake of glycine, whereas the uptake of glutamate in the same experiment was highly stimulated. High concentrations of gamma-amino-n-butyric acid and beta-alanine inhibited vesicular glycine uptake, but glutamate did not. Accumulation of glycine was found to be fourfold higher in a spinal cord synaptic vesicle fraction than in a vesicle fraction from cerebral cortex.  相似文献   

5.
Characterization of Nucleotide Transport into Rat Brain Synaptic Vesicles   总被引:2,自引:0,他引:2  
ATP transport to synaptic vesicles from rat brain has been studied using the fluorescent substrate analogue 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP). The increase in intravesicular concentration was time dependent for the first 30 min, epsilon-ATP being the most abundant nucleotide. The complexity of the saturation curve indicates the existence of kinetic and allosteric cooperativity in the nucleotide transport, which exhibits various affinity states with K0.5 values of 0.39 +/- 0.06 and 3.8 +/- 0.1 mM with epsilon-ATP as substrate. The Vmax values obtained were 13.5 +/- 1.4 pmol x min(-1) x mg of protein(-1) for the first curve and 28.3 +/- 1.6 pmol x min(-1) x mg of protein(-1) considering both components. This kinetic behavior can be explained on the basis of a mnemonic model. The nonhydrolyzable adenine nucleotide analogues adenosine 5'-O-3-(thiotriphosphate), adenosine 5'-O-2-(thiodiphosphate), and adenosine 5'-(beta,gamma-imino)triphosphate and the diadenosine polyphosphates P1,P3-di(adenosine)triphosphate, P1,P4-di(adenosine)tetraphosphate, and P1,P5-di(adenosine)pentaphosphate inhibited the nucleotide transport. The mitochondrial ATP/ADP exchange inhibitor atractyloside, N-ethylmaleimide, and polysulfonic aromatic compounds such as Evans blue and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid also inhibit epsilon-ATP vesicular transport.  相似文献   

6.
Abstract: Aspartate uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on a Na+ gradient ([Na+] outside > [Na+] inside). Active transport of aspartate is strictly dependent upon the presence of sodium and maximal extent of transport is reached when both Na+ and Cl ions are present. The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. The uptake of aspartate is stimulated by a membrane potential (negative inside), as demonstrated by the effect of the ionophore carbonyl cyanide m -chlorophenylhydrazone and anions with different permeabilities. The presence of ouabain, an inhibitor of (Na++ K+)-ATPase, does not affect aspartate transport. The kinetic analysis shows that aspartate is accumulated by two systems with different affinities, showing K m and V max values of similar order to those found in slightly "cruder" preparations. Inhibition of the l -aspartate uptake by d -aspartate and d - and l -glutamate indicates that a common carrier is involved in the process, this being stereospecific for the d - and l -glutamate stereoisomers.  相似文献   

7.
Rat brain synaptic vesicles exhibit ATP-dependent uptake of gamma-[3H]amino-n-butyric acid ([3H]GABA) and L-[3H]glutamate. After hypotonic shock, the highest specific activities of uptake of both L-glutamate and GABA were recovered in the 0.4 M fraction of a sucrose gradient. The uptakes of L-glutamate and GABA were inhibited by similar, but not identical, concentrations of the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone and the ionophores nigericin and gramicidin, but they were not inhibited by the K+ carrier valinomycin. N,N'-Dicyclohexyl-carbodiimide and N-ethylmaleimide, Mg2+-ATPase inhibitors, inhibited the GABA and L-glutamate uptakes similarly. Low concentrations of Cl- stimulated the vesicular uptake of L-glutamate but not that of GABA. The uptakes of both L-glutamate and GABA were inhibited by high concentrations of Cl-. These results indicate that the vesicular GABA and L-glutamate uptakes are driven by an electrochemical proton gradient generated by a similar Mg2+-ATPase. The vesicular uptake mechanisms are discussed in relation to other vesicle uptake systems.  相似文献   

8.
Abstract: The effects of moderate and severe degrees of iron deficiency on brain and liver nonhaem iron levels and 5-hydroxytryptamine (serotonin; 5-HT) uptake by synaptic vesicles in vitro were investigated in experimental rats. Data obtained suggested that in both moderate and severe forms of iron deficiency, 5-HT uptake by brain synaptic vesicles is decreased and is accompanied by a reduction in brain and liver nonhaem iron levels. On repletion with iron for 4 weeks, the deficient group of rats showed a normalisation of 5-HT uptake by synaptic vesicles and liver nonhaem iron content, whereas the brain nonhaem iron concentration still showed a significant deficit. The data thus suggest that changes in the uptake of 5-HT by brain synaptic vesicles that accompany iron depletion and repletion are more rapid than changes in the total nonhaem iron concentration in the brain. The observation that 5-HT uptake by brain synaptic vesicles is decreased in iron deficiency suggests a probable role for iron in 5-HT storage in rat brain.  相似文献   

9.
Glutamate uptake into synaptic vesicles is a vital step for glutamatergic neurotransmission. Quinolinic acid (QA) is an endogenous glutamate analog that may be involved in the etiology of epilepsy and is related to disturbances on glutamate release and uptake. Guanine-based purines (GBPs) guanosine 5′-monophosphate (GMP and guanosine) have been shown to exert anticonvulsant effects against QA-induced seizures. The aims of this study were to investigate the effects of in vivo administration of several convulsant agents on glutamate uptake into synaptic vesicles and investigate the role of MK-801, guanosine or GMP (anticonvulsants) on glutamate uptake into synaptic vesicles from rats presenting QA-induced seizures. Animals were treated with vehicle (saline 0.9%), QA 239.2 nmoles, kainate 30 mg/kg, picrotoxin 6 mg/kg, PTZ (pentylenetetrazole) 60 mg/kg, caffeine 150 mg/kg or MES (maximal transcorneal electroshock) 80 mA. All convulsant agents induced seizures in 80–100% of animals, but only QA stimulated glutamate uptake into synaptic vesicle. Guanosine or GMP prevented seizures induced by QA (up to 52% of protection), an effect similar to the NMDA antagonist MK-801 (60% of protection). Both GBPs and MK-801 prevented QA-induced glutamate uptake stimulation. This study provided additional evidence on the role of QA and GBPs on glutamatergic system in rat brain, and point to new perspectives on seizures treatment.  相似文献   

10.
The effect of maternal dietary iron deficiency on brain synaptic vesicle [3H]serotonin (5-HT) uptake and iron content in the offspring was examined in rats. Pups born to iron-deficient mothers revealed significant deficits in vesicular [3H]5-HT uptake and iron concentration at 21 days of age. These changes were, however, found to be reversible with postweaning iron repletion.  相似文献   

11.
Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.  相似文献   

12.
Abstract: The contents of five synaptic membrane antigens (56K, 58K, 62K, 63K, and 64K) were determined in rat cerebral cortex and cerebellum at eight developmental time points: E9, E14, P < 1, P5, P14, P28, P60, and P180 (E, embryonic; P, postnatal). In cerebral cortex, the five antigens showed five different developmental patterns with respect both to specific content (i.e., quantity per unit of membrane) and total content (i.e., quantity per cortex). The 56K, 58K, and 62K polypeptides were first detected at E14, increased slightly to P5, then increased rapidly from P5 to P28 by 14-, 11-, and 18-fold, respectively. From P28 to PI80, the patterns of these antigens showed very large differences. The 63K and 64K antigens were first detected at P14 and P28, respectively. The specific content of 63K antigen continued to increase steadily throughout adult life; in contrast, the specific content of the 64K antigen did not change appreciably. In cerebellum only three antigens (56K, 58K, and 62K) were detected. These three antigens showed different developmental patterns. The 56K polypeptide was first detected at E14; its specific content increased very rapidly to a maximum at P < 1; it then decreased, first slowly, and then more rapidly, disappearing at P60. The 58K polypeptide also was detectable at E14 and increased very rapidly to a maximum at P < 1. It then decreased markedly to P5, followed by an increase, returning almost to its maximum level at P14. It then slowly decreased disappearing at P180. The 62K antigen was first detected at P14 and then it slowly decreased with disappearance at P60. The patterns with respect to total contents per cerebellum were similar for the three antigens, with a maximum at P28. We conclude that the highest increase in the contents of these antigens roughly corresponds to the period of maximal synaptogenesis (P9 to P28) in both regions. Differences among developmental patterns probably reflect changing molecular machinery required for development and functional differentiation of synapses in different brain regions. The fine structure of these patterns suggests that the quantitative measurement of synaptic membrane antigens will be useful for delineating complex processes occurring during synaptogenesis.  相似文献   

13.
大鼠脑突触质膜糖皮质激素受体的纯化   总被引:1,自引:0,他引:1  
本文利用抗大鼠肝细胞内糖皮质激素受体的单克隆抗体制备的免疫亲和层析柱,将大鼠脑突触质膜糖皮质激素受体纯化了约1150倍,SDS聚丙烯酰胺簿层梯度凝胶电泳显示,在约67kD处有一较明显的染色条带。  相似文献   

14.
Gamma-Aminobutyric acid (GABA) was taken up by a MgATP-dependent mechanism into synaptic vesicles isolated by hypoosmotic shock and density gradient centrifugation. The properties of the vesicular uptake differed clearly from those of synaptosomal and glial uptake, both with respect to Na+, Mg2+, and ATP dependence and with respect to response to general GABA uptake inhibitors such as nipecotic acid, diaminobutyric acid, and beta-alanine. The uptake showed a Km of 5.6 mM and a net uptake rate of 1,500 pmol/min/mg of protein. It is suggested that the vesicular uptake of GABA is driven by an electrochemical proton gradient generated by a Mg2+-ATPase.  相似文献   

15.
Abstract: o-rab3 is an electric ray homologue of low molecular weight GTP-binding proteins thought to be involved in targeting of secretory vesicles to sites of exocytosis. The stimulation-dependent association of o-rab3 with synaptic vesicles was compared with that of the membrane-integral synaptic vesicle protein 2 (SV2). On application of immunoelectron microscopy and the colloidal gold technique, antibodies against either protein labeled the synaptic vesicle membrane compartment. Synaptic vesicles recycled under conditions of low frequency stimulation (0.1 Hz) retained their complement of both SV2 and o-rab3. Isolation of synaptic vesicles by density-gradient centrifugation and subsequent column chromatography yielded no indication of a stimulation-dependent release of o-rab3 from synaptic vesicles. In contrast, multivesicular bodies and vacuoles occasionally observed in the nerve terminals contained SV2 but little if any o-rab3. It is concluded that o-rab3 remains associated with the synaptic vesicle membrane compartment during stimulation-induced cycles of repeated exo- and endocytosis. o-rab3 may be lost once the vesicle enters the prelysosomal pathway.  相似文献   

16.
The effect of ionic permeability changes on acetylcholine (ACh) release from isolated cholinergic synaptic vesicles of Torpedo was studied using a chemiluminescent method for continuous ACh detection. Vesicles rendered freely permeable to potassium by valinomycin lost most of their ACh content in K+ media, if the accompanying anion was permeant; it thus appeared that ACh leakage occurred as the result of internal osmotic changes. Upon addition of ionophores that catalyse monovalent cation/H+ exchange (gramicidin D or a mixture of valinomycin plus protonophore FCCP), a rapid but transient ACh release was observed. Surprisingly, nigericin which also catalyses K+/H+ exchange, had no effect on ACh release. The divalent cation ionophore A23187 promoted ACh release only when calcium (and not magnesium) was introduced into the external medium in a millimolar concentration range. As the simultaneous addition of the protonophore FCCP and A23187 decreased this calcium-dependent ACh leakage, a releasing effect of A23187 through Ca2+/H+ exchange is suspected. The present results emphasise the role of internal protons for ACh retention inside synaptic vesicles.  相似文献   

17.
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.  相似文献   

18.
Synaptic vesicles purified on a sucrose-KCl sedimentation gradient were tested for their ability to accumulate [1-14C]acetylcholine ([1-14C]ACh) in the absence and in the presence of AH5183 and cetiedil. Kinetic studies of ACh transport showed that it was time dependent and saturable as a function of ACh concentration, with a KT of 1.2 mM. The protein-modifying agents N-ethylmaleimide and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole were powerful inhibitors of ACh uptake. In agreement with other studies, AH5183 was found to be a potent inhibitor of ACh uptake by synaptic vesicles. Inhibition was of the mixed noncompetitive type, and the inhibition constant was 45.2 +/- 3.4 nM. Cetiedil, a drug that resembles ACh, was previously shown on intact nerve endings to inhibit the translocation of newly synthesized ACh into the synaptic vesicle compartment, and we demonstrate here that cetiedil is indeed an efficient blocker of ACh uptake by isolated synaptic vesicles. It acted as a competitive inhibitor, with a Ki of 118.5 +/- 9.5 nM. Neither ATP-dependent calcium uptake nor Mg2+-ATPase activity was affected by the drugs, a finding showing their specificity toward the ACh uptake process. The binding of L-[3H]AH5183 to intact vesicles was characterized in the absence or the presence of ACh or cetiedil. Saturation experiments showed a total binding capacity of approximately 126 pmol/mg of vesicular protein and a dissociation constant of 19.9 +/- 4.1 nM under control conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neuronal ATPases comprise a wide variety of enzymes which are not uniformly distributed in different membrane preparations. Since purified vesicle fractions have Mg2+/Ca2+-ATPase, the purpose of the present study was to know whether such enzyme activities have a preferential concentration in a synaptic vesicle fraction in order to be used as markers for these organelles. Resorting to a procedure developed in this Institute, we fractionated the rat cerebral cortex by differential centrifugation following osmotic shock of a crude mitochondrial fraction and separated a purified synaptic vesicle fraction over discontinuous sucrose gradients. Mg2+/Ca2+-ATPase activities and ultrastructural studies of isolated fractions were carried out. It was observed that similar specific activities for Mg2+/Ca2+-ATPases were found in all fractions studied which contain synaptic vesicles and/or membranes. Although the present results confirm the presence of Mg2+ and Ca2+-ATPase activities in synaptic vesicles preparations, they do not favor the contention that Mg2+/Ca2+-ATPase is a good marker for synaptic vesicles.  相似文献   

20.
Several major proteins of synaptic vesicles from rat or cow brain sediment as a large complex on sucrose density gradients when solubilized in nonionic detergents. A vacuolar H(+)-ATPase identified by sensitivity to bafilomycin A1 appears to be associated with this oligomeric protein complex. Two subunits of this complex, synaptic vesicle proteins S and U, correspond to the 57-kDa (B) and 39-kDa accessory (Ac39) subunits, respectively, of bovine chromaffin granule vacuolar H(+)-ATPase as shown by Western immunoblot analysis. The five subunits of the oligomeric complex constitute approximately 20% of the total protein of rat brain synaptic vesicles. Taken together, these results strongly suggest that the abundant, multisubunit complex partially purified from brain synaptic vesicles by density gradient centrifugation is a vacuolar H(+)-ATPase. Bafilomycin A1 completely blocks proton pumping in rat brain synaptic vesicles as measured by [14C]methylamine uptake and also blocks catecholamine accumulation measured by [3H]dopamine uptake. Moreover, ATPase activity, [14C]methylamine uptake, and [3H]dopamine uptake are inhibited by bafilomycin A1 at similar I50 values of approximately 1.7 nmol/mg of protein. These findings indicate that the vacuolar H(+)-ATPase is essential for proton pumping as well as catecholamine uptake by mammalian synaptic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号