首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyclonal antibodies were used to assay human embryonal carcinoma (EC), differentiating EC, yolk sac carcinoma, and teratoma cells for expression of viral early antigen (T-Ag) after infection with simian virus 40 (SV40). Cells of four EC lines were induced to differentiate by cultivation at low density or by exposure to retinoic acid or dimethyl sulfoxide. After infection with SV40, T-Ag was expressed by 1%, or less, of the cells (presumed to be differentiated derivatives) in only some EC cultures whereas the antigen was synthesized by a significant percentage of the yolk sac carcinoma, teratoma, and differentiating EC cells. Also, viral late proteins were produced by EC cells infected with human adenovirus type 7 (Ad7), and SV40 T-Ag was expressed by EC cells after infection with PARA, which is an Ad7-SV40 hybrid virus containing the SV40 T-Ag sequence controlled by Ad7 late regulatory sequences. Thus, T-Ag is not synthesized by the parental EC cells infected with SV40, but it is expressed in cultures of infected differentiated derivatives. The EC cells produce T-Ag, however, when expression of the viral protein is controlled by the Ad7 regulatory sequences in PARA particles. These results demonstrate that expression of T-Ag after infection with SV40 is an indicator of EC cell differentiation and also raise the possibility that, as in mouse EC cells infected with the virus, the SV40 regulatory sequences controlling T-Ag synthesis are not active in human EC cells.  相似文献   

2.
Marked differences were found in the susceptibility of human fibroblasts to transformation by simian virus 40 (SV40). Highly susceptible cell strains were derived from patients with diseases associated with chromosomal abnormalities and a high incidence of tumors. In the present study, SV40 transformation-susceptible cell strains were not found to have a generalized increase in viral sensitivity. The differences in transformation frequency among cell strains with whole virus are eliminated by the use of isolated SV40 deoxyribonucleic acid, suggesting that the relative resistance of most cell strains to transformation by whole virus is due to a block at an early step in infection.  相似文献   

3.
The genomes of the two nondefective adenovirus 2/simian virus 40 (Ad2/SV 40) hybrid viruses, nondefective Ad2/SV 40 hybrid virus 1 (Ad2+ND1) and nondefective hybrid virus 3 (Ad2+ND3), WERE FORMED BY A DELETION OF ABOUT 5% OF Ad2 DNA and insertion of part of the SV40 genome. We have compared the cytoplasmic RNA synthesized during both the early and late stages of lytic infection of human cells by these hybrid viruses to that expressed in Ad2-infected and SV40-infected cells. Separated strands of the six fragments of 32P-labeled Ad2 DNA produced by cleavage with the restriction endonuclease EcoRI (isolated from Escherichia coli) and the four fragments of 32P-labeled SV40 DNA produced by cleavage with both a restriction nuclease isolated from Haemophilus parainfluenzae, Hpa1, and EcoRI were prepared by electrophoresis of denatured DNA in agarose gels. The fraction of each fragment strand expressed as cytoplasmic RNA was determined by annealing fragmented 32P-labeled strands to an excess of cellular RNA extracted from infected cells. The segment of Ad2 DNA deleted from both hybrid virus genomes is transcribed into cytoplasmic mRNA during the early phase of Ad2 infection. Hence, we suggest that Ad2 codes for at least one "early" gene product which is nonessential for virus growth in cell culture. In both early Ad2+ND1 and Ad2+ND3-infected cells, 1,000 bases of Ad2 DNA adjacent to the integrated SV40 sequences are expressed as cytoplasmic RNA but are not similarly expressed in early Ad2-infected cells. The 3' termini of this early hybrid virus RNA maps in the vicinity of 0.18 on the conventional SV40 map and probably terminates at the same position as early lytic SV40 cytoplasmic RNA. Therefore, the base sequence in this region of SV40 DNA specifies the 3' termini of early messenger RNA present in both hybrid virus and SV40-infected cells.  相似文献   

4.
Simian virus 40 (SV40) infection of human diploid cells failed to cause an enhanced production of thymidine kinase during the first 10 days after infection. Thymidine kinase activities from extracts of SV40-transformed cultures (human or simian) were considerably higher than the activity levels in extracts from the normal cells of origin. In addition, whereas the kinase activities obtained for human diploid cultures decreased as the cell sheet became confluent, the kinase activities for SV40-transformed human cells remained high after confluence was reached. Antisera obtained from hamsters bearing SV40 or adeno-7-SV40 hybrid virus tumors selectively inhibited enzyme from transformed sources (human or simian). Also, the antisera selectively inhibited enzyme extracted from SV40-lytically infected monkey cells. Sera from normal animals or from hamsters bearing polyoma tumors failed to inhibit enzymes from normal, SV40-transformed, or SV40-lytically infected cells. The Michaelis constant of partially purified enzyme from SV40-transformed cells was two to five times as high as that obtained for partially purified enzyme from human diploid cell cultures.  相似文献   

5.
Immortal cell lines are essential for genetic and biochemical studies. Unlike rodent cells, which will form continuously growing cultures either spontaneously or after infection with an oncogenic virus (e.g., Simian Virus 40 (SV40)), human cells fail to form continuous cell lines spontaneously and in only rare cases from cell lines after oncogenic virus infection. We have used a plasmid (pSV3gpt) containing both the SV40 early region encoding T antigen and the bacterial gene xanthine-guanine phosphoribosyl transferase (gpt) to achieve high efficiency morphological transformation and immortalization of primary human skin fibroblasts. Transfection of this plasmid into primary human skin fibroblasts derived from a normal individual, two Cockayne's syndrome patients, and an immuno-deficient patient and selection for the gpt gene resulted in an altered cell morphology and growth properties characteristic of previously described SV40-transformed cells. Transfected cultures subsequently senesced, entered crisis and in each case formed a rapidly growing culture. The high efficiency of immunortalization described here (four out of four cell strains) is in contrast to previously described procedures utilizing focal overgrowth. We suggest that the use of a dominant selectable marker linked to the SV40 early region increases the probability of establishing an immortal human cell line.  相似文献   

6.
Nonpermissive 3T3 cells were infected with purified superhelical simian virus 40 (SV40) deoxyribonucleic acid I (DNA I). One hour after infection, approximately 60% of the intracellular SV40 DNA was converted to relaxed forms. One day after infection, all intracellular SV40 DNA was present as slow-sedimenting material, and no SV40 DNA I was detectable. At 2 days after infection there appeared viral DNA sequences cosedimenting with cellular DNA during alkaline velocity centrifugation. Furthermore, by both alkaline equilibrium gradient centrifugation and by DNA-ribonucleic acid hybridization analysis, covalent linkage of viral DNA sequences to cellular DNA was demonstrated. Integration of SV40 DNA into cellular DNA did not appear to require DNA synthesis, although DNA synthesis followed by mitotic division of the cells enhanced the amount of viral DNA integrated. Based on data obtained by two different methods, it was calculated that 1,100 to 1,200 SV40 DNA equivalents must be integrated per cell by 48 hr after infection.  相似文献   

7.
Whereas normal human and monkey cells were susceptible both to intact simian virus 40 (SV40) and to SV40 deoxyribonucleic acid (DNA), human and monkey cells transformed by SV40 were incapable of producing infectious virus after exposure to SV40, but displayed susceptibility to SV40 DNA. On the other hand, mouse and hamster cells, either normal or SV40-transformed, were resistant both to the virus and to SV40 DNA. Hybrids between permissive and nonpermissive parental cells revealed a complex response: whereas most hybrids tested were resistant, three of them produced a small amount of infectious virus upon challenge with SV40 DNA. All were resistant to whole virus challenge. The persistence of infectious SV40 DNA in permissive and nonpermissive cells up to 96 hr after infection was ascertained by cell fusion. The decay kinetics proved to be quite different in permissive and nonpermissive cells. Adsorption of SV40 varied widely among the different cell lines. Very low adsorption of SV40 was detected in nonsusceptible cells with the exception of the mKS-BU100 cell line. A strong increase in SV40 adsorption was produced by pretreating cells with polyoma virus. In spite of this increased adsorption, the resistance displayed by SV40-transformed cells to superinfection with the virus was maintained.  相似文献   

8.
The origin-defective simian virus 40 (SV40) mutant 6-1 has been useful in transforming human cells (Small et al., Nature [London] 296:671-672, 1982; Nagata et al., Nature [London] 306:597-599, 1983). However, the low efficiency of transformation achieved by DNA transfection is a major drawback of the system. To increase the efficiency of SV40-induced transformation of human fibroblasts, we used recombinant adenovirus-SV40 virions which contain a complete SV40 early region including either a wild-type or defective (6-1) origin of replication. The SV40 DNA was cloned into the adenovirus vector in place of early region 1. Cell lines transformed by viruses containing a functional origin of replication produced free SV40 DNA. These cell lines were subcloned, and some of the subclones lost the ability to produce free viral DNA. Subclones that failed to produce free viral DNA were found to possess a mutated T antigen. Cell lines transformed by viruses containing origin-defective SV40 mutants did not produce any free DNA. Because of the high efficiency of transformation, we suggest that the origin-defective chimeric virus is a convenient system for establishing SV40-transformed cell lines from any human cell type that is susceptible to infection by adenovirus type 5.  相似文献   

9.
Summary The mutagenic activity of the tsA239 mutant of SV40 which synthetizes a defective T antigen at 40°C was investigated in Chinese hamster cells under permissive and nonpermissive temperature. At 33°C the virus increased the yield of 6-mercaptopurine-resistant colonies after 2 days expression time by a factor of 1.6–4 as compared with the control and raised the frequency of aberrant metaphases after the same time by a factor of 1.9–3.4.In the same experiments, with the same initially infected population of Chinese hamster cells, at 40°C tsA SV40 did not induce either gene mutations or chromosome aberrations at the same early stage after infection. Presumably the activity of the A gene of SV40 is necessary not only for the transforming but also for the mutagenic effect of the virus.Abbreviations SV40 Simian virus 40 - BAV3 bovine adenovirus 3 - 6MP 6-mercaptopurine  相似文献   

10.
Class I major histocompatibility complex proteins appear to be the major cell surface receptors for simian virus 40 (SV40), as implied by the following observations. Adsorption of SV40 to LLC-MK2 rhesus monkey kidney cells specifically inhibited binding of a monoclonal antibody (MAb) against class I human lymphocyte antigen (HLA) proteins. Conversely, pretreatment of LLC-MK2 cells with anti-HLA MAbs inhibited infection by SV40. The ability of anti-HLA to inhibit infection was greatly reduced when the order of addition of the anti-HLA and the virus was reversed. Infection was also inhibited by preincubating SV40 with purified soluble class I protein. Finally, human lymphoblastoid cells of the Daudi line, which do not express class I major histocompatibility complex proteins, were infected at relatively low levels with SV40 virions. In a control experiment, we found that pretreatment of cells with a MAb specific for the leukocytic-function-associated antigen LFA-3 actually enhanced infection. This finding may also support the premise that class I major histocompatibility complex proteins are receptors for SV40.  相似文献   

11.
Infection of monkey cells with human adenovirus (Ad) is abortive, but the infection can be enhanced by coinfecting with simian virus 40 (SV40). However, in the coinfected monkey cells, Ad interferes strongly with SV40 DNA biosynthesis. This interference was found to be a reproducible, delicately controlled phenomenon that was proportional to the multiplicity of infection of Ad and dependent on the active expression of the Ad genome. Newly synthesized SV40 DNA was not broken down in cells after delayed superinfection with Ad, and several early events of SV40 infection such as adsorption, penetration, uncoating, induction of cellular DNA synthesis, and enhancement of Ad infection were not markedly influenced by Ad-mediated interference. It is unlikely that interference is simply due to competition between SV40 and Ad for metabolites, enzymes, or replication sites. The interference effect could be partially neutralized by an increase in the multiplicity of coinfecting SV40 or by an increase in the time interval between SV40 infection and Ad coinfection. Interference was shown to be due to the activity of an Ad early gene product. However, the detailed mechanism of this Ad interference is still unclear.  相似文献   

12.
Transformation of Mouse Macrophages by Simian Virus 40   总被引:3,自引:0,他引:3       下载免费PDF全文
Studies were undertaken to prove that simian virus 40 (SV40) can transform the mouse macrophage, a cell type naturally restricted from deoxyribonucleic acid (DNA) replication. Balb/C macrophages infected with SV40 demonstrated T-antigen production and induced DNA synthesis simultaneously. In the absence of apparent division, these cells remained T antigen-positive for at least 45 days. SV40 could be rescued from nondividing, unaltered macrophages during the T antigen-producing period. Proliferating transformants appeared at an average of 66 days post-SV40 infection. Established cell lines were T antigen-positive and were negative for infectious virus, but yielded SV40 after fusion with African green monkey kidney cells. Their identity as transformed macrophages was substantiated by evaluation of cellular morphology, phagocytosis, acid phosphatase, beta(1c) synthesis, and aminoacridine incorporation.  相似文献   

13.
14.
15.
African green monkey kidney (AGMK) cells were nonpermissive hosts for type 2 adenovirus although the restriction was not complete; when only 3 plaque-forming units/cell was employed as the inoculum, the viral yield was about 0.1% of the maximum virus produced when simian virus 40 (SV40) enhanced adenovirus multiplication. The viral yield of cells infected only with type 2 adenovirus increased as the multiplicity of infection was increased. Type 2 adenovirus could infect almost all AGMK cells in culture; adenovirus-specific early proteins and DNA were synthesized in most cells, but small amounts of late proteins were made in relatively few cells. Even when cells were infected with both SV40 and adenovirus, only about 50% were permissive for synthesis of adenovirus capsid proteins. Approximately the same quantity of adenovirus deoxyribonucleic acid (DNA) was synthesized in the restricted as in the SV40-enhanced infection. However, in cells infected with SV40 and type 2 adenovirus, replication of SV40 DNA was blocked, multiplication of SV40 was accordingly inhibited, and synthesis of host DNA was not stimulated. To enhance propagation of type 2 adenovirus, synthesis of an early SV40 protein was essential; 50 mug of cycloheximide per ml prevented the SV40-induced enhancement of adenovirus multiplication, whereas 5 x 10(-6)m 5-fluoro-2-deoxyuridine did not abrogate the enhancing phenomenon.  相似文献   

16.
Simian virus SV40, an oncogenic virus in rodents, was accidentally transmitted to humans through the Poliovirus vaccine during the years 1955 to 1963. If the vaccination program were the major source of human infection, then differences in SV40 infection rates by cohort of birth should be observed. The aim of this study was to address this issue. In 134 healthy Italian Caucasian subjects, 15 DNA samples were positive for SV40 by nested polymerase chain reaction and DNA sequencing. The prevalence of genomic infection did not differ across cohorts of birth from 1924 to 1983, however DNA sequencing revealed viral strain differences in individuals born before 1947 and after 1958. While horizontal transmission following the introduction of the polio vaccine could explain the presence of SV40 DNA in younger people, our results also suggest the possibility that other sources of the virus may also be involved in human SV40 infection.  相似文献   

17.
Survival and mutagenesis of UV-irradiated, temperature-sensitive simian virus 40 mutants (SV40) have been studied after infection of human fibroblasts. Survival of the viral progeny obtained after 6,8 or 10 days at permissive temperature decrease as a function of the UV-dose delivered to the virus. In cels which have been pretreated with 10 Jm-2 of UV 24 hours before infection, progeny survival was increased as compared to survival in control cells. The reactivation factor varies from one to ten, depending on the number of lytic cycles carried out at permissive temperature. The level of mutation frequency, as measured by the reversion from a temperature sensitive growth phenotype towards a wild type phenotype, increases with the dose of UV-irradiation given to the virus. Moreover, the mutation frequency is increased in the viral progeny produced in UV-irradiated human cells. Similar experiments carried out with SV40-transformed human fibroblasts, which constitutively express SV40 T antigen, gave comparable results. These experiments show that, as in monkey cells, a new error-prone recovery pathway can be induced by pretreating human cells with UV-light before infection.  相似文献   

18.
Clones of immortalized human fibroblasts with an extended life span in culture and a capability of subloning were obtained after the infection with a temperature sensitive mutant (tsA 239) of SV40 virus and pSV3neo plasmid. As compared with the parental cells, the obtained clones exhibited increased plating efficiency, decreased doubling time, and serum dependence. We did not obtained the colony formation during cultivation of immortalized cells in semiliquid agar. This means that our cells were not completely malignant. The PCR (polymerase chain reaction)-analysis has revealed the presence of viral DNA at early passages (25th passage) after the infection by tsA SV40, and its absence after a prolonged cultivation (46th passage). PCR-analysis of the clones obtained after pSV3neo transfection has revealed the presence of gene A sequences either at early (9-15), or later (62) passages. The expression of the gene A product in cells of these clones was revealed only early passages (11 and 35). Possible mechanisms of immortal phenotype origin in human diploid cells after the action of ts-mutant and other constructions of SV40 are discussed.  相似文献   

19.
P Artelt  C Morelle  M Ausmeier  M Fitzek  H Hauser 《Gene》1988,68(2):213-219
We have constructed two related types of multi-cloning mammalian expression vectors. The first, pMPSVEH/HE, carries the promoter of the myeloproliferative sarcoma virus (MPSV). This promoter was found to be stronger than both the SV40 early and the trans-activated human immunodeficiency virus promoters in many cell lines including human and rodent fibroblastoid, lymphoid or myeloid cells. The other, pBEH/HE, carries the simian virus 40 (SV40) early promoter and origin of replication. This offers the possibility of encapsidation in SV40 pseudovirions and subsequent gene transfer into, e.g., hemopoietic cells, via infection. The usefulness of the expression systems was tested with a number of genes and cell lines.  相似文献   

20.
The relationship between replication of simian virus 40 (SV40) DNA and the various periods of the host-cell cycle was investigated in synchronized CV(1) cells. Cells synchronized through a double excess thymidine procedure were infected with SV40 at the beginning or the middle of S, or in G(2). The first viral progeny DNA molecules were in all instances detected approximately 20 h after release from the thymidine block, independent of the time of infection. The length of the early, prereplicative phase of the virus growth cycle therefore depended upon the period of the cell cycle at which the cells were infected. Infection with SV40 was also performed on cells obtained in early G(1) through selective detachment of cells in metaphase. As long as the cells were in G(1) at the time of infection, the first viral progeny DNA molecules were detected during the S period immediately following, whereas if infection took place once the cells had entered S, no progeny DNA molecule could be detected until the S period of the next cell cycle. These results suggest that the infected cell has to pass through a critical stage situated in late G(1) or early S before SV40 DNA replication can eventually be initiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号