首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A comparative study of the pH-dependent redox mechanisms of several members of the cytochrome c 3 family has been carried out. In a previous work, the molecular determinants of this dependency (the so-called redox-Bohr effect) were investigated for one species using continuum electrostatic methods to find groups with a titrating range and strength of interaction compatible with a mediating role in the redox-Bohr effect. Here we clarify these aspects in the light of new and improved pK a calculations, our findings supporting the hypothesis of propionate D from heme I being the main effector in the pH-dependent modulation of the cytochrome c 3 redox potentials in all the c 3 molecules studied here. However, the weaker (but significant) role of other titrating groups cannot be excluded, their importance and identity changing with the particular molecule under study. We also calculate the relative redox potentials of the four heme centers among the selected members of the c 3 family, using a continuum electrostatic method that takes into account both solvation and interaction effects. Comparison of the calculated values with available data for the microscopic redox potentials was undertaken, the quality of the agreement being dependent upon the choice of the dielectric constant for the protein interior. We find that high dielectric constants give best correlations, while low values result in better magnitudes for the calculated potentials. The possibility that the crystallographic calcium ion in c 3 from Desulfovibrio gigas may be present in the solution structure was tested, and found to be likely. Received: 31 August 1998 / Accepted: 20 November 1998  相似文献   

2.
The tetraheme cytochrome c3 is a small metalloprotein with ca. 13,000 Da found in sulfate-reducing bacteria, which is believed to act as a partner of hydrogenase. The three-dimensional structure of the oxidized and reduced forms of cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774 at pH 7.6 were determined using high-resolution X-ray crystallography and were compared with the previously determined oxidized form at pH 4.0. Theoretical calculations were performed with both structures, using continuum electrostatic calculations and Monte Carlo sampling of protonation and redox states, in order to understand the molecular basis of the redox-Bohr and cooperativity effects related to the coupled transfer of electrons and protons. We were able to identify groups that showed redox-linked conformational changes. In particular, Glu61, His76, and propionate D of heme II showed important contributions to the redox-cooperativity, whereas His76, propionate A of heme I, and propionate D of heme IV were the key residues for the redox-Bohr effect. Upon reduction, an important movement of the backbone region surrounding hemes I and II was also identified, that, together with a few redox-linked conformational changes in side-chain residues, results in a significant decrease in the solvent accessibility of hemes I and II.  相似文献   

3.
A new method is presented for simulating the simultaneous binding equilibrium of electrons and protons on protein molecules, which makes it possible to study the full equilibrium thermodynamics of redox and protonation processes, including electron-proton coupling. The simulations using this method reflect directly the pH and electrostatic potential of the environment, thus providing a much closer and realistic connection with experimental parameters than do usual methods. By ignoring the full binding equilibrium, calculations usually overlook the twofold effect that binding fluctuations have on the behavior of redox proteins: first, they affect the energy of the system by creating partially occupied sites; second, they affect its entropy by introducing an additional empty/occupied site disorder (here named occupational entropy). The proposed method is applied to cytochrome c3 of Desulfovibrio vulgaris Hildenborough to study its redox properties and electron-proton coupling (redox-Bohr effect), using a continuum electrostatic method based on the linear Poisson-Boltzmann equation. Unlike previous studies using other methods, the full reduction order of the four hemes at physiological pH is successfully predicted. The sites more strongly involved in the redox-Bohr effect are identified by analysis of their titration curves/surfaces and the shifts of their midpoint redox potentials and pKa values. Site-site couplings are analyzed using statistical correlations, a method much more realistic than the usual analysis based on direct interactions. The site found to be more strongly involved in the redox-Bohr effect is propionate D of heme I, in agreement with previous studies; other likely candidates are His67, the N-terminus, and propionate D of heme IV. Even though the present study is limited to equilibrium conditions, the possible role of binding fluctuations in the concerted transfer of protons and electrons under nonequilibrium conditions is also discussed. The occupational entropy contributions to midpoint redox potentials and pKa values are computed and shown to be significant.  相似文献   

4.
A comprehensive study of the thermodynamic redox behavior of the hemes of the ba3 enzyme from Thermus thermophilus, a B-type heme-copper oxygen reductase, is presented. This enzyme, in contrast to those having a single type of heme, allows the B- and A-type hemes to be monitored separately by visible spectroscopy and the reduction potential of each heme to be determined unequivocally. The relative order of the midpoint reduction potentials of each center changed in the pH range from 6 to 8.4, and both hemes present a significant redox-Bohr effect. For instance, at pH 7, the midpoint reduction potentials of the hemes B and A3 are 213 mV and 285 mV, respectively, whereas at pH 8.4, the order is reversed: 246 mV for heme B and 199 mV for heme A3. The existence of redox anticooperativity was established by introducing a redox interaction parameter in a model of pairwise interacting redox centers.  相似文献   

5.
《Biophysical journal》1998,75(3):1483-1490
The effect of ionic strength on the macroscopic and microscopic redox potentials and the heme environment of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F have been investigated by NMR and electrochemical methods. The redox potentials of this tetraheme protein are found to be ionic strength-dependent. Especially, the microscopic redox potentials of hemes 2 and 3 at the fourth reduction step increase significantly with increasing ionic strength, which is in contradiction to the theoretical expectation. The coordinated imidazole proton signals are unaffected by ionic strength. However, the methyl and propionate proton signals of hemes 1 and 4 showed significant ionic strength dependencies that are distinct from those for hemes 2 and 3. This heme classification is the same as that found in the ionic strength dependencies of the microscopic redox potentials at the fourth reduction step. Furthermore, the effect of ionic strength on the electrostatic potentials at the heme irons has been examined on the theoretical basis. The electrostatic potential at heme 4 changes up to 1 M ionic strength, which was not expected from the observations reported on cytochromes so far. These results are discussed in connection with the reported anomalous ionic strength dependency of the reduction rate of cytochrome c3.  相似文献   

6.
One of the most popular and simple models for the calculation of pKas from a protein structure is the semi‐macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Cytochromes c 7 are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins—phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c 7 family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of 1H–15N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer.  相似文献   

8.
Ca2+ ions shift the absorption spectrum of reduced cytochromea in mitochondria by acting from the outside of the membrane. In isolated cytochrome oxidase the shift may be induced by either Ca2+ or H+, the apparent pK varying between 6.20 and 5.75 depending on the state of cytochromea 3. Studies of the Soret band show that Ca2+ also shifts the spectrum of ferrocytochromea 3 in isolated oxidase in contrast to the situation in mitochondria or isolated oxidase reconstituted into liposomes. Model studies with reduced bis-imidazole heme A reveals an analogous spectral shift induced by Ca2+. Esterification of the propionate carboxyls of heme A abolishes the spectral shift, suggesting that it is due to interaction of Ca2+ with these groups. When taken together with the data with intact mitochondria, this suggests that the propionate side chains of cytochromea are accessible to Ca2+ and H+ from the outside of the mitochondrial membrane. In the soluble enzyme both hemesa anda 3 are accessible. Thus hemea may be located near the outside of the inner membrane whereas hemea 3 experiences a different environment in which no Ca2+ shift occurs.  相似文献   

9.
The pH dependence of redox properties, spectroscopic features and CO binding kinetics for the chelated protohemin-6(7)-l-histidine methyl ester (heme-H) and the chelated protohemin-6(7)-glycyl-l-histidine methyl ester (heme-GH) systems has been investigated between pH 2.0 and 12.0. The two heme systems appear to be modulated by four protonating groups, tentatively identified as coordinated H2O, one of heme’s propionates, Nε of the coordinating imidazole, and the carboxylate of the histidine residue upon hydrolysis of the methyl ester group (in acid medium). The pK a values are different for the two hemes, thus reflecting structural differences. In particular, the different strain at the Fe–N ε bond, related to the different length of the coordinating arm, results in a dramatic alteration of the bond strength, which is much smaller in heme-H than in heme-GH. It leads to a variation in the variation of the pK a for the protonation of the N ε of the axial imidazole as well as in the proton-linked behavior of the other protonating groups, envisaging a cross-talk communication mechanism among different groups of the heme, which can be operative and relevant also in the presence of the protein matrix. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
The propionate groups of heme a and a3 in cytochrome c oxidase (CcO) have been postulated to mediate both the electron and proton transfer within the enzyme. To establish structural markers for the propionate groups, their associated vibrational modes were identified in the resonance Raman spectra of CcO from bovine (bCcO) and Rhodobacter sphaeroides (RsCcO). The distinction between the modes from the propionates of heme a and heme a3, as well as those from the propionates on the pyrrole rings A and D in each heme, was made on the basis of H2O–D2O isotope substitution experiments combined with wavelength-selective resonance enhancement (for bCcO) or mutagenesis studies (for RsCcO).  相似文献   

11.
Bacteria of the genus Shewanella contain an abundant small tetraheme cytochrome in their periplasm when growing anaerobically. Data collected for the protein isolated from S. oneidensis MR-1 and S. frigidimarina indicate differences in the order of oxidation of the hemes. A detailed thermodynamic characterization of the cytochrome from S. oneidensis MR-1 in the physiological pH range was performed, with data collected in the pH range 5.5–9.0 from NMR experiments using partially oxidized samples and from redox titrations followed by visible spectroscopy. These data allow the parsing of the redox and redox–protonation interactions that occur during the titration of hemes. The results show that electrostatic effects dominate the heme–heme interactions, in agreement with modest redox-linked structural modifications, and protonation has a considerable influence on the redox properties of the hemes in the physiological pH range. Theoretical calculations using the oxidized and reduced structures of this protein reveal that the bulk redox–Bohr effect arises from the aggregate fractional titration of several of the heme propionates. This detailed characterization of the thermodynamic properties of the cytochrome shows that only a few of the multiple microscopic redox states that the protein can access are significantly populated at physiological pH. On this basis a functional pathway for the redox activity of the small tetraheme cytochrome from S. oneidensis MR-1 is proposed, where reduction and protonation are thermodynamically coupled in the physiological range. The differences between the small tetraheme cytochromes from the two organisms are discussed in the context of their biological role.  相似文献   

12.
The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus is a member of the succinate:menaquinone oxidoreductases family. It is constituted by three subunits with apparent molecular masses of 70, 32, and 18 kDa. The optimum temperature for succinate dehydrogenase activity is 80°C, higher than the optimum growth temperature of R. marinus, 65°C. The enzyme shows a high affinity for both succinate (K m = 0.165 mM) and fumarate (K m = 0.10 mM). It contains the canonical iron–sulfur centers S1, S2, and S3, as well as two B-type hemes. In contrast to other succinate dehydrogenases, the S3 center has an unusually high reduction potential of +130 mV and is present in two different conformations, one of which presents an unusual EPR signal with g values at 2.035, 2.009, and 2.001. The apparent midpoint reduction potentials of the hemes, +75 and –65 mV at pH 7.5, are also higher than those reported for other enzymes. The heme with the lower potential (heme bL) presents a considerable dependence of the reduction potential with pH (redox–Bohr effect), having a pK a OX = 6.5 and a pK a red = 8.7. This behavior is consistent with the proposal that in these enzymes menaquinone reduction occurs close to heme bL, near to the periplasmic side of the membrane, and involving dissipation of the proton transmembrane gradient.  相似文献   

13.
The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.  相似文献   

14.
NMR and visible spectroscopy were used to characterize the type II tetraheme cytochrome c(3) isolated from the periplasmic space of Desulfovibrio africanus, a sulfate-reducing bacterium. Although structurally similar to other cytochromes c(3), this protein displays distinct functional properties. Proton NMR signals from the four hemes were assigned to the structure in the ferri- and ferrocytochromes using two-dimensional NMR experiments. The thermodynamic parameters of the hemes and of an acid-base center in the type II cytochrome c(3) were determined using NMR and visible spectroscopies. The thermodynamic features indicate that electrostatic effects dominate all of the interactions between the centers and no positive cooperativity between hemes is observed. The redox-Bohr effect in this protein is associated with the acid-base equilibrium of a propionate of heme II instead of propionate 13 of heme I as is the case for all of the type I cytochromes c(3). These novel functional properties are analyzed together with the redox-linked structural differences reported in the literature and reveal a mechanistic basis for type II cytochromes c(3) having a physiological function that is different from that of type I cytochromes c(3).  相似文献   

15.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

16.
The photosynthetic reaction center (RC) from Rhodopseudomonas viridis contains four cytochrome c hemes. They establish the initial part of the electron transfer (ET) chain through the RC. Despite their chemical identity, their midpoint potentials cover an interval of 440 mV. The individual heme midpoint potentials determine the ET kinetics and are therefore tuned by specific interactions with the protein environment. Here, we use an electrostatic approach based on the solution of the linearized Poisson-Boltzmann equation to evaluate the determinants of individual heme redox potentials. Our calculated redox potentials agree within 25 meV with the experimentally measured values. The heme redox potentials are mainly governed by solvent accessibility of the hemes and propionic acids, by neutralization of the negative charges at the propionates through either protonation or formation of salt bridges, by interactions with other hemes, and to a lesser extent, with other titratable protein side chains. In contrast to earlier computations on this system, we used quantum chemically derived atomic charges, considered an equilibrium-distributed protonation pattern, and accounted for interdependencies of site-site interactions. We provide values for the working potentials of all hemes as a function of the solution redox potential, which are crucial for calculations of ET rates. We identify residues whose site-directed mutation might significantly influence ET processes in the cytochrome c part of the RC. Redox potentials measured on a previously generated mutant could be reproduced by calculations based on a model structure of the mutant generated from the wild type RC.  相似文献   

17.
Summary The1H NMR signals of the heme methyl, propionate and related chemical groups of cytochromec 3 fromDesulfovibrio vulgaris Miyazaki F (D.v. MF) were site-specifically assigned by means of ID NOE, 2D DQFCOSY and 2D TOCSY spectra. They were consistent with the site-specific assignments of the hemes with the highest and second-lowest redox potentials reported by Fan et al. (Biochemistry,29 (1990) 2257–2263). The site-specific heme assignments were also supported by NOE between the methyl groups of these hemes and the side chain of Val18. All the results contradicted the heme assignments forD.v. MF cytochromec 3 made on the basis of electron spin resonance (Gayda et al. (1987)FEBS Lett.,217 57–61). Based on these assignments, the interaction of cytochromec 3 withD.v. MF ferredoxin I was investigated by NMR. The major interaction site of cytochromec 3 was identified as the heme with the highest redox potential, which is surrounded by the highest density of positive charges. The stoichiometry and association constant were two cytochromec 3 molecules per monomer of ferredoxin I and 108 M–2 (at 53 mM ionic strength and 25°C), respectively.  相似文献   

18.
Cytochrome c oxidase of the ba 3-type from Thermus thermophilus does not interact with cyanide in the oxidized state and acquires the ability to bind heme iron ligands only upon reduction. Cyanide complexes of the reduced heme a 3 in cytochrome ba 3 and in mitochondrial aa 3-type cytochrome oxidase are similar spectroscopically, but the a 32+-CN complex of cytochrome ba 3 is strikingly tight. Experiments have shown that the K d value of the cytochrome ba 3 complex with cyanide in the presence of reductants of the enzyme binuclear center does not exceed 10−8 M, which is four to five orders of magnitude less than the K d of the cyanide complex of the reduced heme a 3 of mitochondrial cytochrome oxidase. The tightness of the cytochrome ba 3 complex with cyanide is mainly associated with an extremely slow rate of the ligand dissociation (k off ≤ 10−7 sec−1), while the rate of binding (k on ∼ 102 M−1·sec−1) is similar to the rate observed for the mitochondrial cytochrome oxidase. It is proposed that cyanide dissociation from the cytochrome ba 3 binuclear center might be hindered sterically by the presence of the second ligand molecule in the coordination sphere of CuB2+. The rate of cyanide binding with the reduced heme a 3 does not depend on pH in the neutral area, but it approaches linear dependence on H+ activity in the alkaline region. Cyanide binding appears to be controlled by protonation of an enzyme group with pK a = 8.75.  相似文献   

19.
Cooperative interaction of the high-potential hemes (Ch) in the cytochrome subunit of the photosynthesizing bacterium Ectothiorhodospira shaposhnikovii was studied by comparing redox titration curves of the hemes under the conditions of pulse photoactivation inducing single turnover of electron-transport chain and steady-state photoactivation, as well as by analysis of the kinetics of laser-induced oxidation of cytochromes by reaction center (RC). A mathematical model of the processes of electron transfer in cytochrome-containing RC was considered. Theoretical analysis revealed that the reduction of one heme Ch facilitated the reduction of the other heme, which was equivalent to a 60 mV positive shift of the midpoint potential. In addition, reduction of the second heme Ch caused a three-to four-fold acceleration of the electron transfer from the cytochrome subunit to RC. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 11, pp. 1540–1547.  相似文献   

20.
The facultative aerobic bacterium Geobacter sulfurreducens produces a small periplasmic c-type triheme cytochrome with 71 residues (PpcA) under anaerobic growth conditions, which is involved in the iron respiration. The thermodynamic properties of the PpcA redox centers and of a protonatable center were determined using NMR and visible spectroscopy techniques. The redox centers have negative and different reduction potentials (-162, -143, and -133 mV for heme I, III, and IV, respectively, for the fully reduced and protonated protein), which are modulated by redox interactions among the hemes (covering a range from 10 to 36 mV) and by redox-Bohr interactions (up to -62 mV) between the hemes and a protonatable center located in the proximity of heme IV. All the interactions between the four centers are dominated by electrostatic effects. The microscopic reduction potential of heme III is the one most affected by the oxidation of the other hemes, whereas heme IV is the most affected by the protonation state of the molecule. The thermodynamic properties of PpcA showed that pH strongly modulates the redox behavior of the individual heme groups. A preferred electron transfer pathway at physiologic pH is defined, showing that PpcA has the necessary thermodynamic properties to perform e-/H+ energy transduction, contributing to a H+ electrochemical potential gradient across the periplasmic membrane that drives ATP synthesis. PpcA is 46% identical in sequence to and shares a high degree of structural similarity with a periplasmic triheme cytochrome c7 isolated from Desulfuromonas acetoxidans, a bacterium closely related to the Geobacteracea family. However, the results obtained for PpcA are quite different from those published for D. acetoxidans c7, and the physiological consequences of these differences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号