首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract We show that thrB -encoded homoserine kinase is required for growth of Escherichia coli K-12 pdxB mutants on minimal glucose medium supplemented with 4-hydroxy-l-threonine (synonym, 3-hydroxyhomoserine) or d-glycolaldehyde. This result is consistent with a model in which 4-phospho-hydroxy-l-threonine (synonym, 3-hydroxyhomoserine phosphate), rather than 4-hydroxy-l-threonine, is an obligatory intermediate in pyridoxal 5'-phosphate biosynthesis. Ring closure using 4-phospho-hydroxy-l-threonine as a substrate would lead to the formation of pyridoxine 5'-phosphate, and not pyridioxine, as the first B6-vitamer synthesized de novo. These considerations suggest that E. coli pyridoxal/pyridoxamine/pyridoxine kinase is not required for the main de novo pathway of pyridoxal 5'-phosphate biosynthesis, and instead plays a role only in the B6-vitamer salvage pathway.  相似文献   

2.
Vitamin B6 (pyridoxal phosphate) is an essential cofactor in enzymatic reactions involved in numerous cellular processes and also plays a role in oxidative stress responses. In plants, the pathway for de novo synthesis of pyridoxal phosphate has been well characterized, however only two enzymes, pyridoxal (pyridoxine, pyridoxamine) kinase (SOS4) and pyridoxamine (pyridoxine) 5' phosphate oxidase (PDX3), have been identified in the salvage pathway that interconverts between the six vitamin B6 vitamers. A putative pyridoxal reductase (PLR1) was identified in Arabidopsis based on sequence homology with the protein in yeast. Cloning and expression of the AtPLR1 coding region in a yeast mutant deficient for pyridoxal reductase confirmed that the enzyme catalyzes the NADPH-mediated reduction of pyridoxal to pyridoxine. Two Arabidopsis T-DNA insertion mutant lines with insertions in the promoter sequences of AtPLR1 were established and characterized. Quantitative RT-PCR analysis of the plr1 mutants showed little change in expression of the vitamin B6 de novo pathway genes, but significant increases in expression of the known salvage pathway genes, PDX3 and SOS4. In addition, AtPLR1 was also upregulated in pdx3 and sos4 mutants. Analysis of vitamer levels by HPLC showed that both plr1 mutants had lower levels of total vitamin B6, with significantly decreased levels of pyridoxal, pyridoxal 5'-phosphate, pyridoxamine, and pyridoxamine 5'-phosphate. By contrast, there was no consistent significant change in pyridoxine and pyridoxine 5'-phosphate levels. The plr1 mutants had normal root growth, but were significantly smaller than wild type plants. When assayed for abiotic stress resistance, plr1 mutants did not differ from wild type in their response to chilling and high light, but showed greater inhibition when grown on NaCl or mannitol, suggesting a role in osmotic stress resistance. This is the first report of a pyridoxal reductase in the vitamin B6 salvage pathway in plants.  相似文献   

3.
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.  相似文献   

4.
Vitamin B(6) is a generic term referring to pyridoxine, pyridoxamine, pyridoxal and their related phosphorylated forms. Pyridoxal 5'-phosphate is the catalytically active form of vitamin B(6), and acts as cofactor in more than 140 different enzyme reactions. In animals, pyridoxal 5'-phosphate is recycled from food and from degraded B(6)-enzymes in a "salvage pathway", which essentially involves two ubiquitous enzymes: an ATP-dependent pyridoxal kinase and an FMN-dependent pyridoxine 5'-phosphate oxidase. Once it is made, pyridoxal 5'-phosphate is targeted to the dozens of different apo-B(6) enzymes that are being synthesized in the cell. The mechanism and regulation of the salvage pathway and the mechanism of addition of pyridoxal 5'-phosphate to the apo-B(6)-enzymes are poorly understood and represent a very challenging research field. Pyridoxal kinase and pyridoxine 5'-phosphate oxidase play kinetic roles in regulating the level of pyridoxal 5'-phosphate formation. Deficiency of pyridoxal 5'-phosphate due to inborn defects of these enzymes seems to be involved in several neurological pathologies. In addition, inhibition of pyridoxal kinase activity by several pharmaceutical and natural compounds is known to lead to pyridoxal 5'-phosphate deficiency. Understanding the exact role of vitamin B(6) in these pathologies requires a better knowledge on the metabolism and homeostasis of the vitamin. This article summarizes the current knowledge on structural, kinetic and regulation features of the two enzymes involved in the PLP salvage pathway. We also discuss the proposal that newly formed PLP may be transferred from either enzyme to apo-B(6)-enzymes by direct channeling, an efficient, exclusive, and protected means of delivery of the highly reactive PLP. This new perspective may lead to novel and interesting findings, as well as serve as a model system for the study of macromolecular channeling. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.  相似文献   

5.
Pyridoxal kinase catalyses the phosphorylation of pyridoxal, pyridoxine and pyridoxamine to their 5' phosphates and plays an important role in the pyridoxal 5' phosphate salvage pathway. The crystal structure of a dimeric pyridoxal kinase from Bacillus subtilis has been solved in complex with ADP to 2.8 A resolution. Analysis of the structure suggests that binding of the nucleotide induces the ordering of two loops, which operate independently to close a flap on the active site. Comparisons with other ribokinase superfamily members reveal that B. subtilis pyridoxal kinase is more closely related in both sequence and structure to the family of HMPP kinases than to other pyridoxal kinases, suggesting that this structure represents the first for a novel family of "HMPP kinase-like" pyridoxal kinases. Moreover this further suggests that this enzyme activity has evolved independently on multiple occasions from within the ribokinase superfamily.  相似文献   

6.
Pyridoxal kinase was purified 4760-fold from rat liver. The Km values for pyridoxine and pyridoxal were 120 and 190 microM respectively, and pyridoxine showed substrate inhibition at above 200 microM. Pyridoxamine 5-phosphate oxidase was also purified 2030-fold from rat liver, and its Km values for pyridoxine 5-phosphate and pyridoxamine 5-phosphate were 0.92 and 1.0 microM respectively. Pyridoxine 5-phosphate gave a maximum velocity that was 5.6-fold greater than with pyridoxamine 5-phosphate and showed strong substrate inhibition at above 6 microM. Among the tryptophan metabolites, picolinate, xanthurenate, quinolinate, tryptamine and 5-hydroxytryptamine inhibited pyridoxal kinase. However, pyridoxamine 5-phosphate oxidase could not be inhibited by tryptophan metabolites, and on the contrary it was activated by 3-hydroxykynurenine and 3-hydroxyanthranilate. Regarding the metabolism of vitamin B-6 in the liver, the effects of tryptophan metabolites that were accumulated in vitamin B-6-deficient rats after tryptophan injection were discussed.  相似文献   

7.
Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP), forming pyridoxal 5'-phosphate (PLP). This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli and as a part of the salvage pathway of this coenzyme in both E. coli and mammalian cells. Recent studies have shown that in addition to the active site, PNPOx contains a noncatalytic site that binds PLP tightly. The crystal structures of PNPOx with one and two molecules of PLP bound have been determined. In the active site, the PLP pyridine ring is stacked almost parallel against the re-face of the middle ring of flavin mononucleotide (FMN). A large protein conformational change occurs upon binding of PLP. When the protein is soaked with excess PLP an additional molecule of this cofactor is bound about 11 A from the active site. A possible tunnel exists between the two sites. Site mutants were made of all residues at the active site that make interactions with the substrate. Stereospecificity studies showed that the enzyme is specific for removal of the proR hydrogen atom from the prochiral C4' carbon of PMP. The crystal structure and the stereospecificity studies suggest that the pair of electrons on C4' of the substrate are transferred to FMN as a hydride ion.  相似文献   

8.
Hydroxymethylpyrimidine kinase, which catalyzes the conversion of 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) to its monophosphate, is purified about 3300-fold to apparent homogeneity from the cell-free extracts of E. coli K-12 through four successive steps of column chromatographies. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis and its molecular weight is estimated to be 43 000-44 000. The enzyme phosphorylated each of the pyridoxine substrates, pyridoxine, pyridoxal and pyridoxamine as well as hydroxymethylpyrimidine, and the reaction gave rise to a corresponding 5'-phosphate compound. The Km values of the purified enzyme for hydroxymethylpyrimidine and for pyridoxine are 1.1.10(-4) and 6.6.10(-5) M, respectively. Pyridoxine inhibits competitively the phosphorylation of hydroxymethylpyrimidine with a Ki value of 2.7.10(-6) M and hydroxymethylpyrimidine shows the same for that of pyridoxine with a Ki value of 9.0.10(-5) M. A similarity in enzymic properties between the hydroxymethylpyrimidine kinase and an enzyme which has been characterized as pyridoxal kinase leads to the assumption that both hydroxymethylpyrimidine and pyridoxine might be phosphorylated by the same enzyme species.  相似文献   

9.
The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.  相似文献   

10.
The substrate activity of pyridoxamine (PM) for brain pyridoxal (PL) kinase was examined in view of a recent report which indicated that PM was a poor substrate for this enzyme. Bovine brain PL kinase was shown by liquid chromatography to catalyze the phosphorylation of PM (Km = 65 microM). The identity of the reaction product, pyridoxamine 5'-phosphate, was confirmed by is ability to act as a substrate for liver pyridoxine (pyridoxamine) 5'-phosphate oxidase. The results, which indicate that PM is a good substrate for brain PL kinase, are consistent with the proposed role of intracellular phosphorylation in the uptake of vitamin B-6 brain tissue.  相似文献   

11.
A new enzymatic method for the synthesis of [14C]pyridoxal 5'-phosphate is presented. [14C]Pyridoxal 5'-phosphate was synthesized from [14C]pyridoxine through the successive actions of pyridoxal kinase and pyridoxamine 5'-phosphate oxidase in a reaction mixture containing ATP, [14C]pyridoxine, and both enzymes. [14C]Pyridoxal 5'-phosphate was isolated by omega-aminohexyl-Sepharose 6B column chromatography. The overall yield of the product was more than 60%, starting from 550 nmol of [14C]pyridoxine. The radiochemical purity of the products, as determined by thin-layer and ion-exchange chromatography, was greater than 98%.  相似文献   

12.
M Tagaya  K Yamano  T Fukui 《Biochemistry》1989,28(11):4670-4675
Pyridoxal kinase from pig liver has been purified 10,000-fold to apparent homogeneity. The enzyme is a dimer of subunits of Mr 32,000. The enzyme is strongly inhibited by the product pyridoxal 5'-phosphate. Liver pyridoxamine phosphate oxidase, another enzyme involved in the biosynthesis of pyridoxal 5'-phosphate, is also strongly inhibited by this compound [Wada, H., & Snell, E. E. (1961) J. Biol. Chem. 236, 2089-2095]. Thus, the biosynthesis of pyridoxal 5'-phosphate in the liver might be regulated by the product inhibition of both pyridoxamine phosphate oxidase and pyridoxal kinase. Kinetic studies revealed that the catalytic reaction of liver pyridoxal kinase follows an ordered mechanism in which pyridoxal and ATP bind to the enzyme and ADP and pyridoxal 5'-phosphate are released from the enzyme, in this order. Adenosine tetraphosphopyridoxal was found to be a slow-binding inhibitor of pyridoxal kinase. Pre-steady-state kinetics of the inhibition revealed that the inhibitor and the enzyme form an initial weak complex prior to the formation of a tighter and slowly reversing complex. The overall inhibition constant was 2.4 microM. ATP markedly protects the enzyme against time-dependent inhibition by the inhibitor, whereas another substrate pyridoxal affords no protection. By contrast, adenosine triphosphopyridoxal is not a slow-binding inhibitor of this enzyme.  相似文献   

13.
At least six phenotypically distinct classes of mutants of Escherichia coli which require serine or pyridoxine or both can be isolated. Three of the six classes lack 3-phosphoserine-2-oxoglutarate aminotransferase. One of these classes contains WG5, a mutant previously characterized as containing the pdxF5 allele. The aminotransferase isolated from this mutant has been compared to that isolated from wild-type E. coli and found to have apparently normal affinity for pyridoxal 5'-phosphate, but reduced affinity for pyridoxamine 5'-phosphate.  相似文献   

14.
PDX3 and SALT OVERLY SENSITIVE4 (SOS4), encoding pyridoxine/pyridoxamine 5'-phosphate oxidase and pyridoxal kinase, respectively, are the only known genes involved in the salvage pathway of pyridoxal 5'-phosphate in plants. In this study, we determined the phenotype, stress responses, vitamer levels, and regulation of the vitamin B(6) pathway genes in Arabidopsis (Arabidopsis thaliana) plants mutant in PDX3 and SOS4. sos4 mutant plants showed a distinct phenotype characterized by chlorosis and reduced plant size, as well as hypersensitivity to sucrose in addition to the previously noted NaCl sensitivity. This mutant had higher levels of pyridoxine, pyridoxamine, and pyridoxal 5'-phosphate than the wild type, reflected in an increase in total vitamin B(6) observed through HPLC analysis and yeast bioassay. The sos4 mutant showed increased activity of PDX3 as well as of the B(6) de novo pathway enzyme PDX1, correlating with increased total B(6) levels. Two independent lines with T-DNA insertions in the promoter region of PDX3 (pdx3-1 and pdx3-2) had decreased PDX3 activity. Both also had decreased activity of PDX1, which correlated with lower levels of total vitamin B(6) observed using the yeast bioassay; however, no differences were noted in levels of individual vitamers by HPLC analysis. Both pdx3 mutants showed growth reduction in vitro and in vivo as well as an inability to increase growth under high light conditions. Increased expression of salvage and some of the de novo pathway genes was observed in both the pdx3 and sos4 mutants. In all mutants, increased expression was more dramatic for the salvage pathway genes.  相似文献   

15.
BACKGROUND: Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate (PLP), a cofactor used by many enzymes involved in amino acid metabolism. The enzyme oxidizes either the 4'-hydroxyl group of pyridoxine 5'-phosphate (PNP) or the 4'-primary amine of pyridoxamine 5'-phosphate (PMP) to an aldehyde. PNPOx is a homodimeric enzyme with one flavin mononucleotide (FMN) molecule non-covalently bound to each subunit. A high degree of sequence homology among the 15 known members of the PNPOx family suggests that all members of this group have similar three-dimensional folds. RESULTS: The crystal structure of PNPOx from E. coli has been determined to 1.8 A resolution. The monomeric subunit folds into an eight-stranded beta sheet surrounded by five alpha-helical structures. Two monomers related by a twofold axis interact extensively along one-half of each monomer to form the dimer. There are two clefts at the dimer interface that are symmetry-related and extend from the top to the bottom of the dimer. An FMN cofactor that makes interactions with both subunits is located in each of these two clefts. CONCLUSIONS: The structure is quite similar to the recently deposited 2.7 A structure of Saccharomyces cerevisiae PNPOx and also, remarkably, shares a common structural fold with the FMN-binding protein from Desulfovibrio vulgaris and a domain of chymotrypsin. This high-resolution E. coli PNPOx structure permits predictions to be made about residues involved in substrate binding and catalysis. These predictions provide testable hypotheses, which can be answered by making site-directed mutants.  相似文献   

16.
Previous studies have demonstrated that the vitamin pyridoxal phosphate can alter the physicochemical properties of glucocorticoid receptors. We now report the localization of a pyridoxal phosphate binding site within the mero-receptor domain of this glucocorticoid receptor. Mero-glucocorticoid receptors that are generated by trypsin (10 μg/ml) or chymotrypsin (100 μg/ml) digestion of intact receptors sediment as 2.6 S species on 5–20% sucrose gradients in the presence or absence of pyridoxal phosphate. Mero-glucocoritcoid receptors prepared by exogenous proteinases are hydrophobic and show no affinity for DEAE Bio-Gel A. Treating either trypsin-generated or chymotrypsin-generated mero-receptors with pyridoxal phosphate rapidly converts the proteins (60 and 35%, respectively) into forms that bind to DEAE Bio-Gel A. Induction of DEAE binding is specific to pyridoxal phosphate, for treating mero-receptors with pyridoxal, pyridoxamine or pyridoxine phosphate is ineffective. Furthermore, DEAE binding cannot be induced by adding other pyridoxal phosphate-treated cytosols to untreated mero-receptors. High-resolution polyacrylamide gel isoelectric focussing studies indicated that treating mero-receptor generated by either proteinase with pyridoxal phosphate shifted the isoelectric points of lower pH values. The conversion of the mero-receptor to a more acidic form also occurred when the intact glucocorticoid receptor was treated with the vitamin prior to proteolysis. These studies localize at least one pyridoxal phosphate binding site on the mero-receptor domain of the rat thymocyte glucocorticoid receptor.  相似文献   

17.
Pyridoxal kinase (PDXK) catalyzes the phosphorylation of pyridoxal, pyridoxamine, and pyridoxine in the presence of ATP and Zn2+. This constitutes an essential step in the synthesis of pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, a cofactor for over 140 enzymes. (R)-Roscovitine (CYC202, Seliciclib) is a relatively selective inhibitor of cyclin-dependent kinases (CDKs), currently evaluated for the treatment of cancers, neurodegenerative disorders, renal diseases, and several viral infections. Affinity chromatography investigations have shown that (R)-roscovitine also interacts with PDXK. To understand this interaction, we determined the crystal structure of PDXK in complex with (R)-roscovitine, N6-methyl-(R)-roscovitine, and O6-(R)-roscovitine, the two latter derivatives being designed to bind to PDXK but not to CDKs. Structural analysis revealed that these three roscovitines bind similarly in the pyridoxal-binding site of PDXK rather than in the anticipated ATP-binding site. The pyridoxal pocket has thus an unexpected ability to accommodate molecules different from and larger than pyridoxal. This work provides detailed structural information on the interactions between PDXK and roscovitine and analogs. It could also aid in the design of roscovitine derivatives displaying strict selectivity for either PDXK or CDKs.  相似文献   

18.
19.
Pyridoxine dehydrogenase (1.1.1.65) (pyridoxal reductase), purified to homogeneity from baker's yeast, is a monomer of Mr approximately 33,000. It catalyzes the reversible oxidation of pyridoxine by NADP to yield pyridoxal and NADPH; equilibrium lies far in the direction of pyridoxine formation (Keq approximately 1.4 X 10(11) l/mol at 25 degrees C). Reduction of pyridoxal occurs most rapidly at pH 6.0-7.0; oxidation of pyridoxine is optimal at pH 8.6. NAD and NADH do not replace NADP and NADPH as substrates; pyridoxine, pyridoxal and pyridoxal 5'-phosphate are the only naturally occurring cosubstrates found. Several other aromatic aldehydes also are reduced, but substrate specificity and other properties of the enzyme distinguish it clearly from other alcohol dehydrogenases or aldehyde reductases. Between pH 6.3 and 7.1 (the intracellular pH of yeast), V/Km with pyridoxal and NADPH as substrates is greater than 600 times that observed with pyridoxine and NADPH as substrates is greater than 600 times that observed with pyridoxine and NADP as substrates. These and other considerations strongly indicate that the dehydrogenase functions in vivo to reduce pyridoxal to pyridoxine, which is the preferred substrate for pyridoxal (pyridoxine) kinase in yeast.  相似文献   

20.
Escherichia coli pyridoxine (pyridoxamine) 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate to pyridoxal 5'-phosphate (PLP) using flavin mononucleotide (FMN) as the immediate electron acceptor and oxygen as the ultimate electron acceptor. This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli. Removal of FMN from the holoenzyme results in a catalytically inactive apoenzyme. PLP molecules bind tightly to both apo- and holoPNPOx with a stoichiometry of one PLP per monomer. The unique spectral property of apoPNPOx-bound PLP suggests a non-Schiff base linkage. HoloPNPOx with tightly bound PLP shows normal catalytic activity, suggesting that the tightly bound PLP is at a noncatalytic site. The tightly bound PLP is readily transferred to aposerine hydroxymethyltransferase in dilute phosphate buffer. However, when the PNPOx. PLP complex was added to aposerine hydroxymethyltransferase suspended in an E. coli extract the rate of reactivation of the apoenzyme was several-fold faster than when free PLP was added. This suggests that PNPOx somehow targets PLP to aposerine hydroxymethyltransferase in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号