首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intercellular distribution of enzymes involved in amino nitrogen synthesis was studied in leaves of species representing three C4 groups, i.e. Sorghum bicolor, Zea mays, Digitaria sanguinalis (NADP malic enzyme type); Panicum miliaceum (NAD malic enzyme type); and Panicum maximum (phosphoenolpyruvate carboxykinase type). Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase were predominantly localized in mesophyll cells of all the species, except in P. maximum where nitrite reductase had similar activity on a chlorophyll basis, in both mesophyll and bundle sheath cells. NADH-glutamate dehydrogenase was concentrated in the bundle sheath cells, while NADPH-glutamate dehydrogenase was localized in both mesophyll and bundle sheath cells. The activities of nitrate-assimilating enzymes, except for nitrate reductase, were high enough to account for the proposed in vivo rates of nitrate assimilation.  相似文献   

2.
A major source of inorganic nitrogen for rice plants grown in paddy soil is ammonium ions. The ammonium ions are actively taken up by the roots via ammonium transporters and subsequently assimilated into the amide residue of glutamine (Gln) by the reaction of glutamine synthetase (GS) in the roots. The Gln is converted into glutamate (Glu), which is a central amino acid for the synthesis of a number of amino acids, by the reaction of glutamate synthase (GOGAT). Although a small gene family for both GS and GOGAT is present in rice, ammonium-dependent and cell type-specific expression suggest that cytosolic GS1;2 and plastidic NADH-GOGAT1 are responsible for the primary assimilation of ammonium ions in the roots. In the plant top, approximately 80% of the total nitrogen in the panicle is remobilized through the phloem from senescing organs. Since the major form of nitrogen in the phloem sap is Gln, GS in the senescing organs and GOGAT in developing organs are important for nitrogen remobilization and reutilization, respectively. Recent work with a knock-out mutant of rice clearly showed that GS1;1 is responsible for this process. Overexpression studies together with age- and cell type-specific expression strongly suggest that NADH-GOGAT1 is important for the reutilization of transported Gln in developing organs. The overall process of nitrogen utilization within the plant is discussed.  相似文献   

3.
In nitrogen-starved Chlamydomonas reinhardtii , wild type, strain 21 gr cells, consumption of nitrate, nitrite and ammonium may occur in the dark in the absence of an added carbon source. Consumption of ammonium in the dark was about 25% higher than in the light, while consumption of nitrate or nitrite in the dark was lower than in the light.
N starvation produced a linear increase with time in the intracellular level of glutamine synthetase (GS, EC 6.3.2.1) and glutamate synthase (NADH-GOGAT, EC 1.4.1.14 and ferredoxin-GOGAT, EC 1.4.7.1) activities in C. reinhardtii . The effect on GS1 (3-fold) and NADH-GOGAT (4.5-fold) was higher than that on GS2 (1.5-fold) and ferredoxin-GOGAT (1.5-fold).
Experiments with methylammonium, L-methionine-D, L-sulfoximine (MSX) and azaserine suggest that: 1) Ammonium itself decreases the intracellular levels of glutamine synthetase and ferredoxin-glutamate synthase activities; and 2) a metabolite resulting from ammonium assimilation by the alga may be a negative modulator of NADH-glutamate synthase activity.  相似文献   

4.
Moore R  Black CC 《Plant physiology》1979,64(2):309-313
Nitrogen assimilation in crabgrass Digitaria sanguinalis (L.) Scop., was studied by comparing leaf extracts with isolated mesophyll cell and bundle sheath strand extracts. The results show that both nitrate and nitrate reductase are localized in mesophyll cells; glutamine synthetase is nearly equally distributed in the mesophyll and bundle sheath; approximately 67% of the glutamate synthase activity is in the bundle sheath and 33% is in the mesophyll; and 80% of the glutamate dehydrogenase activity is in the bundle sheath, with the NADH-dependent form exhibiting a 2.5-fold higher activity than the NADPH-dependent form.  相似文献   

5.
The cellular localization of the enzymes involved in primary nitrogen assimilation was investigated following separation of mesophyll protoplasts and bundle-sheath cells of maize (Zea mays L.) leaves. Determination of the enzymatic activities in the two types of cell revealed that nitrate and nitrite reductase are principally located in the mesophyll cells whereas glutamine synthetase (GS) and ferredoxin-dependent glutamate synthase (Fd-GOGAT) are present in both tissues with a preferential location in the bundle-sheath strands. In order to confirm the results obtained by this conventional biochemical method we have used an in-situ immunofluorescence technique to unambiguously localize GS and Fd-GOGAT at the cellular level. Thin-sectioned maize leaves treated with specific GS and Fd-GOGAT antisera followed by conjugation with fluorescein-isothiocyanate-labelled sheep anti-rabbit immunoglobulins clearly show that GS is equally distributed within the leaf whereas Fd-GOGAT is mostly present in the chloroplasts of the bundle-sheath cells. The cellular localization of nitrate reductase, nitrite reductase, GS-2 and Fd-GOGAT in maize leaf cell types strongly indicates that primary nitrogen assimilation functions in the mesophyll cells while photorespiratory nitrogen recycling is restricted to the bundle-sheath cells.  相似文献   

6.
The localization of enzymes responsible for nitrate assimilation and the generation of NADH for nitrate reduction were studied in corn (Zea mays L.) leaf blades. The techniques used effectively separated mesophyll and bundle sheath cells as judged by microscopic observations, enzymic assays, chlorophyll a/b ratios and photochemical activities. Nitrate reductase, nitrite reductase, and the nitrate content of leaf blades were localized primarily in the mesophyll cells, although some nitrite reductase was found in the bundle sheath cells. Glutamine synthetase, NAD-malate dehydrogenase, NAD-glyceraldehyde-3-phosphate dehydrogenase, and NADP-glutamate dehydrogenase were found in both types of cells, however, more NADP-glutamate dehydrogenase was found in the bundle sheath cells than in the mesophyll cells. These data indicate that the mesophyll cells are the major site for nitrate assimilation in the leaf blade because they contained an ample supply of nitrate and the enzymes considered essential for the assimilation of nitrate into amino acids. Because the specific activity of nitrate reductase was severalfold lower than the other enzymes involved in nitrate assimilation, nitrate reduction is indicated as the rate-limiting step in situ. A sequence of reactions is proposed for nitrate assimilation in the mesophyll cells of corn leaves as related to the C-4 pathway of photosynthesis.  相似文献   

7.
In order to improve our understanding of the regulation of nitrogen assimilation and recycling in wheat (Triticum aestivum L.), we studied the localization of plastidic (GS2) and cytosolic (GS1) glutamine synthetase isoenzymes and of glutamate dehydrogenase (GDH) during natural senescence of the flag leaf and in the stem. In mature flag leaves, large amounts of GS1 were detected in the connections between the mestome sheath cells and the vascular cells, suggesting an active transfer of nitrogen organic molecules within the vascular system in the mature flag leaf. Parallel to leaf senescence, an increase of a GS1 polypeptide (GS1b) was detected in the mesophyll cytosol of senescing leaves, while the GS protein content represented by another polypetide (GS1a) in the phloem companion cells remained practically constant in both leaves and stems. Both GDH aminating activity and protein content were strongly induced in senescing flag leaves. The induction occurred both in the mitochondria and in the cytosol of phloem companion cells, suggesting that the shift in GDH cellular compartmentation is important during leaf nitrogen remobilization although the metabolic or sensing role of the enzyme remains to be elucidated. Taken together, our results suggest that in wheat, nitrogen assimilation and recycling are compartmentalized between the mesophyll and the vasculature, and are shifted in different cellular compartments within these two tissues during the transition of sink leaves to source leaves.  相似文献   

8.
E. Harel  P. J. Lea  B. J. Miflin 《Planta》1977,134(2):195-200
The activities of nitrate reductase (EC1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC6.3.1.2), glutamate synthase (EC1.4.7.1) and NAD(P)H-dependent glutamate dehydrogenase (EC 1.4.1.3) were investigated in mesophyll and bundle sheath cells of maize leaves (Zea mays L.). Whereas nitrate and nitrite reductase appear to be restricted to the mesophyll and GDH to the bundle sheath, glutamine synthetase and glutamate synthase are active in both tissues.During the greening process, the activities of nitrate and nitrite reductase increased markedly, but glutamine synthetase, glutamate synthase and glutamate dehydrogenase changed little.Abbreviations BDH British Drug Houses - EDTA Ethylene diamine tetra-acetic acid - GDH Glutamate dehydrogenase - NADH Nicotinamide-adenine dinucleotide reduced form - NADPH Nicotnamide-adenine dinucleotide phosphate reduced form - PMSF Phenylmethyl sulphonyl fluoride  相似文献   

9.
Cellular compartmentation of ammonium assimilation in rice and barley   总被引:9,自引:0,他引:9  
This review describes immunolocalization studies of the tissue and cellular location of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (Fd GOGAT; EC 1.4.7.1 and NADH-GOGAT; EC 1.4.1.14) proteins in roots and leaves of rice (Oryza sativa L.) and barley (Hordeum vulgare L.). In rice, cytosolic GS (GS1) protein was distributed homogeneously through all cells of the root. NADH GOGAT protein was strongly induced and its cellular location altered by ammonium treatment, becoming concentrated within the epidermal and exodermal cells. Fd GOGAT protein location changed with root development, from a widespread distribution in young cells to becoming concentrated within the central cylinder as cells matured. Plastid GS protein was barely detectable in rice roots, but was the major isoform in leaves, being present in the mesophyll and parenchyma sheath cells. GS1 was specific to the vascular bundle, as was NADH GOGAT, whereas Fd GOGAT was primarily found in mesophyll cells. In barley roots, GS1 protein was found in the cortical and vascular parenchyma and its concentration was highest in N-deficient seedlings. Plastid GS protein was detected in both cortical and vascular cells, where different plastid forms, containing different concentrations of GS protein, were identified. In barley leaves, GS2 protein was detected in the mesophyll chloroplasts and GS1 was found in the mesophyll and vascular cells. N nutrition strongly influenced this distribution, with a marked increase in GS1 concentration in the vascular cells in response to nitrate and ammonium, and an increase in mesophyll GS2 concentration in nitrate-grown seedlings. Fd GOGAT protein was found in both the mesophyll and vascular plastids. These localization studies show that the GS/GOGAT cycle is highly compartmentalized at both the subcellular and cellular levels. Reasons for this compartmentation, and the roles of each isoform, are discussed.  相似文献   

10.
The distribution of amino acids and key enzymes involved innitrogen metabolism was determined in mesophyll cells (MC),mesophyll protoplasts (MP), and paraveinal mesophyll protoplasts(PVMP) isolated from fully expanded trifoliolate leaves of non-nodulatedsoybean. Qualitative and quantitative differences were foundin the distribution of amino acids, with MP containing the highestconcentrations. Activity of nitrate reductase, glycolate oxidase,glutamine synthetase and glutamate dehydrogenase was measuredin both tissue types and differences in activities between thetissue types were seen. PVMP had high glutamate dehydrogenaseactivity when compared to MP. Activities of glycolate oxidaseand glutamine synthetase were much higher in MP on a protoplastbasis while nitrate reductase activity was similar between thetwo protoplast types. These results, on the distribution ofmetabolites and associated enzymes, are discussed as to theirpossible significance to nitrogen metabolism in the soybeanleaf. Key words: Amino acids, glutamate dehydrogenase, Glycine max, nitrate reductase, nitrogen metabolism, paraveinal mesophyll, protoplasts  相似文献   

11.
Glutamine synthetase (EC 6.3.1.2) is a key enzyme of ammonium assimilation and recycling in plants where it catalyses the synthesis of glutamine from ammonium and glutamate. In Arabidopsis, five GLN1 genes encode GS1 isoforms. GLN1;2 is the most highly expressed in leaves and is over-expressed in roots by ammonium supply and in rosettes by ample nitrate supply compared with limiting nitrate supply. It is shown here that the GLN1;2 promoter is mainly active in the minor veins of leaves and flowers and, to a lower extent, in the parenchyma of mature leaves. Cytoimmunochemistry reveals that the GLN1;2 protein is present in the companion cells. The role of GLN1;2 was determined by examining the physiology of gln1;2 knockout mutants. Mutants displayed lower glutamine synthetase activity, higher ammonium concentration, and reduced rosette biomass compared with the wild type (WT) under ample nitrate supply only. No difference between mutant and WT can be detected under limiting nitrate conditions. Despite total amino acid concentration was increased in the old leaves of mutants at high nitrate, no significant difference in nitrogen remobilization can be detected using (15)N tracing. Growing plants in vitro with ammonium or nitrate as the sole nitrogen source allowed us to confirm that GLN1;2 is induced by ammonium in roots and to observe that gln1;2 mutants displayed, under such conditions, longer root hair and smaller rosette phenotypes in ammonium. Altogether the results suggest that GLN1;2 is essential for nitrogen assimilation under ample nitrate supply and for ammonium detoxification.  相似文献   

12.
Rice plants grown in anaerobic paddy soil prefer to use ammonium ion as an inorganic nitrogen source for their growth. The ammonium ions are assimilated by the coupled reaction of glutamine synthetase (GS) and glutamate synthase (GOGAT). In rice, there is a small gene family for GOGAT: there are two NADH-dependent types and one ferredoxin (Fd)-dependent type. Fd-GOGAT is important in the re-assimilation of photorespiratorily generated ammonium ions in chloroplasts. Although cell-type and age-dependent expression of two NADH-GOGAT genes has been well characterized, metabolic function of individual gene product is not fully understood. Reverse genetics approach is a direct way to characterize functions of isoenzymes. We have isolated a knockout rice mutant lacking NADH-dependent glutamate synthase1 (NADH-GOGAT1) and our studies show that this isoenzyme is important for primary ammonium assimilation in roots at the seedling stage. NADH-GOGAT1 is also important in the development of active tiller number, when the mutant was grown in paddy field until the harvest. Expression of NADH-GOGAT2 and Fd-GOGAT in the mutant was identical with that in wild-type, suggesting that these GOGATs are not able to compensate for NADH-GOGAT1 function.  相似文献   

13.
P. A. Edge  T. R. Ricketts 《Planta》1978,138(2):123-125
Platymonas striata Butcher displays significant levels of glutamate synthase (GS) (EC 2.6.1.53) and glutamine synthetase (GOGAT) (EC 6.3.1.2.), but very low levels of glutamate dehydrogenase (GDH) (EC 1.4.1.4). This suggests that the GS/GOGAT pathway is important for nitrogen assimilation. The in vitro rates of enzyme activity can however only account for about 10% of the in vivo rates of nitrogen assimilation. Nitrogen-starvation reduced GS activity to undetectable levels. On nitrate or ammonium ion refeeding the cellular GS activity was rapidly restored, and reached levels of 56% and 91% greater than the unstarved values 24h after refeeding nitrate or ammonium respectively.Abbreviations NAR nitrate reductase - NIR nitrate reductase  相似文献   

14.
The aim of this study was to determine the effects of high temperature stress on ammonium assimilation in leaves of two tall fescue cultivars (Festuca arundinacea), Jaguar 3 brand (J3) (heat-tolerant) and TF 66 (T6) (heat-sensitive). High temperature stress for either 10 d or 20 d, and particularly the 20 d stress, produced dramatic changes in ammonium assimilation. After 20 d of stress treatment, the accumulations of total nitrogen, nitrate, soluble protein and total free amino acid (20 amino acids) decreased in both cultivars. Moreover, the activities of main regulatory enzymes, such as nitrate reductase, glutamine synthetase (GS), NADH-dependent glutamate synthase (GOGAT), as well as Δ1-pyrroline-5-carboxylate reductase (P5CR), also decreased in both cultivars when exposed to 20 d stress. Heat stress had little influence on ammonium accumulation in J3, but this was not the case with T6. The accumulations of nitrate, ammonium, soluble protein, and total free amino acid between the two cultivars were different. This suggests that accumulations of these nitrogen forms were associated with heat tolerance in both tall fescue cultivars. Changes of both NADH-glutamate dehydrogenase (NADH-GDH) activity and Glx (glutamine and glutamic acid) concentration in both cultivars indicated that there is an alternative system for assimilation of nitrogen through glutamate dehydrogenase (GDH) in T6 during longer high temperature stress periods. Our results provide an insight to further selection and breeding of heat-tolerant tall fescue turfgrass cultivars.  相似文献   

15.
Barley plants (Hordeum vulgare L. cv. Mazurka) were grown inaerated solution cultures with 2 mM or 8 mM inorganic nitrogensupplied as nitrate alone, ammonium alone or 1:1 nitrate+ammonium.Activities of the principal inorganic nitrogen assimilatoryenzymes and nitrogen transport were measured. Activities ofnitrate and nitrite reductases, glutamine synthetase and glutamatesynthase were greater in leaves than in roots but glutamatedehydrogenase was most active in roots. Only nitrate and nitritereductases changed notably (4–10 times) in response tothe different nitrogen treatments. Nitrate reductase appearedto be rate-limiting for nitrate assimilation to glutamate inroots and also in leaves, where its total in vitro activitywas closely related to nitrate flux in the xylem sap and wasslightly in excess of that needed to reduce the transportednitrate. Xylem nitrate concentration was 13 times greater thanthat in the nutrient solution. Ammonium nitrogen was assimilatedalmost completely in the roots and the small amount releasedinto the xylem sap was similar for the nitrate and the ammoniumtreatments. The presence of ammonium in the nutrient decreasedboth export of nitrate to the xylem and its accumulation inleaves and roots. Nitrate was stored in stem bases and was releasedto the xylem and thence to the leaves during nitrogen starvation.In these experiments, ammonium was assimilated principally inthe roots and nitrate in the leaves. Any advantage of this divisionof function may depend partly on total conversion of inorganicnitrogen to amino acids when nitrate and ammonium are givenin optimal concentrations. Hordeum vulgare L., barley, nitrate, ammonium, nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase, nitrogen transport  相似文献   

16.
In Phormidium laminosum cells, nitrogen starvation caused a decrease in the intracellular levels of all amino acids, except glutamate, and an increase in the total level of the analyzed organic acids. The addition of nitrate or ammonium to N-starved cells resulted in substantial increases in the pool size of most amino acids. Upon addition of ammonium the total level of organic acids diminished, whereas it increased upon addition of nitrate, after a transient decay during the first minutes. Nitrogen resupply stimulated amino acid synthesis, the effect being faster and higher when ammonium was assimilated. The data indicate that nitrate and ammonium assimilation induced an enhancement of carbon flow through the glycolytic and the tricarboxylic-acid pathways to amino acid biosynthesis, with a concurrent decrease in the carbohydrate reserves. The results suggest that the availability of carbon skeletons limited the rate of ammonium assimilation, whereas the availability of reducing equivalents limited the rate of nitrate assimilation.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) This work has been supported by grants from the Spanish Ministry of Education and Science (DGICYT and PB92-0464) and the University of the Basque Country (042.310-EC203/94) M.I.T. and J.A.G. were the recipients of fellowships from the Basque Government.  相似文献   

17.
18.
Ammonium assimilation in cyanobacteria   总被引:7,自引:0,他引:7  
  相似文献   

19.
In Neurospora crassa, synthesis of the enzymes of nitrate assimilation, nitrate reductase and nitrite reductase, was repressed by the presence of ammonium, glutamate, or glutamine. This phenomenon was a manifestation of the regulatory process termed nitrogen metabolite repression whereby alternative pathways of nitrogen acquisition are not expressed in cells enjoying nitrogen sufficiency. However, the glutamine synthetase mutant gln-1b had derepressed levels of the nitrate assimilation enzymes. The inability of glutamine to achieve nitrogen metabolite repression in this mutant militated against its potential role as the direct effector of this regulation.  相似文献   

20.
To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号