首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at postsynaptic sites determines neuronal outputs in the CNS. Using immunohistochemical and electrophysiological approaches, we first reveal that steroidogenic factor 1 (SF-1) green fluorescent protein (GFP)-positive neurons in the ventromedial nucleus of the hypothalamus express P2X4 subunits that are activated by exogenous ATP. Increased membrane expression of P2X4 channels by using a peptide competing with P2X4 intracellular endocytosis motif enhances neuronal excitability of SF-1 GFP-positive neurons. This increased excitability is inhibited by a P2X receptor antagonist. Furthermore, increased surface P2X4 receptor expression significantly decreases the frequency and the amplitude of GABAergic postsynaptic currents of SF-1 GFP-positive neurons. Co-immunopurification and pulldown assays reveal that P2X4 receptors complex with aminobutyric acid, type A (GABA(A)) receptors and demonstrate that two amino acids in the carboxyl tail of the P2X4 subunit are crucial for its physical association with GABA(A) receptors. Mutation of these two residues prevents the physical association, thereby blocking cross-inhibition between P2X4 and GABA(A) receptors. Moreover, disruption of the physical coupling using competitive peptides containing the identified motif abolishes current inhibition between P2X4 and GABA(A) receptors in recombinant system and P2X4 receptor-mediated GABAergic depression in SF-1 GFP-positive neurons. Our present work thus provides evidence for cross-talk between excitatory and inhibitory receptors that appears to be crucial in determining GABAergic synaptic strength at a central synapse.  相似文献   

2.
3.
Adenosine triphosphate (ATP)-gated P2X2 receptors exhibit two opposite activation-dependent changes, pore dilation and pore closing (desensitization), through a process that is incompletely understood. To address this issue and to clarify the roles of calcium and the C-terminal domain in gating, we combined biophysical and mathematical approaches using two splice forms of receptors: the full-size form (P2X2aR) and the shorter form missing 69 residues in the C-terminal domain (P2X2bR). Both receptors developed conductivity for N-methyl-D-glucamine within 2-6 s of ATP application. However, pore dilation was accompanied with a decrease rather than an increase in the total conductance, which temporally coincided with rapid and partial desensitization. During sustained agonist application, receptors continued to desensitize in calcium-independent and calcium-dependent modes. Calcium-independent desensitization was more pronounced in P2X2bR, and calcium-dependent desensitization was more pronounced in P2X2aR. In whole cell recording, we also observed use-dependent facilitation of desensitization of both receptors. Such behavior was accounted for by a 16-state Markov kinetic model describing ATP binding/unbinding and activation/desensitization. The model assumes that naive receptors open when two to three ATP molecules bind and undergo calcium-independent desensitization, causing a decrease in the total conductance, or pore dilation, causing a shift in the reversal potential. In calcium-containing media, receptor desensitization is facilitated and the use-dependent desensitization can be modeled by a calcium-dependent toggle switch. The experiments and the model together provide a rationale for the lack of sustained current growth in dilating P2X2Rs and show that receptors in the dilated state can also desensitize in the presence of calcium.  相似文献   

4.
5.
Ivermectin (IVM), a widely used antiparasitic agent in human and veterinary medicine, was recently shown to augment macroscopic currents through rat P2X(4) receptor channels. In the present study, the effects of IVM on the human P2X(4) (hP2X(4)) receptor channel stably transfected in HEK293 cells were investigated by recording membrane currents using the patch clamp technique. In whole-cell recordings, IVM (< or =10 microM) applied from outside the cell (but not from inside) increased the maximum current activated by ATP, and slowed the rate of current deactivation. These two phenomena likely result from the binding of IVM to separate sites. A higher affinity site (EC(50) 0.25 microM) increased the maximal current activated by saturating concentrations of ATP without significantly changing the rate of current deactivation or the EC(50) and Hill slope of the ATP concentration-response relationship. A lower affinity site (EC(50) 2 microM) slowed the rate of current deactivation, and increased the apparent affinity for ATP. In cell-attached patch recordings, P2X(4) receptor channels exhibited complex kinetics, with multiple components in both the open and shut distributions. IVM (0.3 microM) increased the number of openings per burst, without significantly changing the mean open or mean shut time within a burst. At higher concentrations (1.5 microM) of IVM, two additional open time components of long duration were observed that gave rise to long-lasting bursts of channel activity. Together, the results suggest that the binding of IVM to the higher affinity site increases current amplitude by reducing channel desensitization, whereas the binding of IVM to the lower affinity site slows the deactivation of the current predominantly by stabilizing the open conformation of the channel.  相似文献   

6.
P2X receptors are trimeric cation channels that open in response to the binding of adenosine triphosphate (ATP) to a large extracellular domain. The x-ray structure of the P2X4 receptor from zebrafish (zfP2X4) receptor reveals that the extracellular vestibule above the gate opens to the outside through lateral fenestrations, providing a potential pathway for ions to enter and exit the pore. The extracellular region also contains a void at the central axis, providing a second potential pathway. To investigate the energetics of each potential ion permeation pathway, we calculated the electrostatic free energy by solving the Poisson-Boltzmann equation along each of these pathways in the zfP2X4 crystal structure and a homology model of rat P2X2 (rP2X2). We found that the lateral fenestrations are energetically favorable for monovalent cations even in the closed-state structure, whereas the central pathway presents strong electrostatic barriers that would require structural rearrangements to allow for ion accessibility. To probe ion accessibility along these pathways in the rP2X2 receptor, we investigated the modification of introduced Cys residues by methanethiosulfonate (MTS) reagents and constrained structural changes by introducing disulfide bridges. Our results show that MTS reagents can permeate the lateral fenestrations, and that these become larger after ATP binding. Although relatively small MTS reagents can access residues in one of the vestibules within the central pathway, no reactive positions were identified in the upper region of this pathway, and disulfide bridges that constrain movements in that region do not prevent ion conduction. Collectively, these results suggest that ions access the pore using the lateral fenestrations, and that these breathe as the channel opens. The accessibility of ions to one of the chambers in the central pathway likely serves a regulatory function.  相似文献   

7.
The opening of ligand-gated ion channels in response to agonist binding is a fundamental process in biology. In ATP-gated P2X receptors, little is known about the molecular events that couple ATP binding to channel opening. In this paper, we identify structural changes of the ATP site accompanying the P2X2 receptor activation by engineering extracellular zinc bridges at putative mobile regions as revealed by normal mode analysis. We provide evidence that tightening of the ATP sites shaped like open 'jaws' induces opening of the P2X ion channel. We show that ATP binding favours jaw tightening, whereas binding of a competitive antagonist prevents gating induced by this movement. Our data reveal the inherent dynamic of the binding jaw, and provide new structural insights into the mechanism of P2X receptor activation.  相似文献   

8.
Inhibitory interactions between 5-HT subtype 3 (5-HT(3)) and P2X receptors were characterized using whole cell recording techniques. Currents induced by 5-HT (I(5-HT)) and ATP (I(ATP)) were blocked by tropisetron (or ondansetron) and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, respectively. Currents induced by 5-HT + ATP (I(5-HT+ATP)) were only as large as the current induced by the most effective transmitter, revealing current occlusion. Occlusion was observed at membrane potentials of -60 and 0 mV (for inward currents), but it was not present at +40 mV (for outward currents). Kinetic and pharmacological properties of I(5-HT+ATP) indicate that they are carried through 5-HT(3) and P2X channels. Current occlusion occurred as fast as activation of I(5-HT) and I(ATP), was still present in the absence of Ca(2+) or Mg(2+), after adding staurosporine, genistein, K-252a, or N-ethylmaleimide to the pipette solution, after substituting ATP with proportional to, beta-methylene ATP or GTP with GTP-gamma-S in the pipette, and was observed at 35 degrees C, 23 degrees C, and 8 degrees C. These results are in agreement with a model that considers that 5-HT(3) and P2X channels are in functional clusters and that these channels might directly inhibit each other.  相似文献   

9.
The GABA(A) receptors are ligand-gated chloride channels. The subunit stoichiometry of the receptors is controversial; four, five, or six subunits per receptor molecule have been proposed for alphabeta receptors, whereas alphabetagamma receptors are assumed to be pentamers. In this study, alpha-beta and beta-alpha tandem cDNAs from the alpha1 and beta2 subunits of the GABA(A) receptor were constructed. We determined the minimal length of the linker that is required between the two subunits for functional channel expression for each of the tandem constructs. 10- and 23-amino acid residues are required for alpha-beta and beta-alpha, respectively. The tandem constructs either alone or in combination with each other failed to express functional channels in Xenopus oocytes. Therefore, we can exclude tetrameric or hexameric alphabeta GABA(A) receptors. We can also exclude proteolysis of the tandem constructs. In addition, the tandem constructs were combined with single alpha, beta, or gamma subunits to allow formation of pentameric arrangements. In contrast to the combination with alpha subunits, the combination with either beta or gamma subunits led to expression of functional channels. Therefore, a pentameric arrangement containing two alpha1 and three beta2 subunits is proposed for the receptor composed of alpha and beta subunits. Our findings also favor an arrangement betaalphagammabetaalpha for the receptor composed of alpha, beta, and gamma subunits.  相似文献   

10.
P2X receptors are cation selective channels that are activated by extracellular nucleotides. These channels are likely formed by three identical or related subunits, each having two transmembrane segments (TM1 and TM2). To identify regions that undergo rearrangement during gating and to probe their secondary structure, we performed tryptophan scanning mutagenesis on the two putative TMs of the rat P2X4 receptor channel. Mutant channels were expressed in Xenopus oocytes, concentration-response relationships constructed for ATP, and the EC50 estimated by fitting the Hill equation to the data. Of the 22 mutations in TM1 and 24 in TM2, all but one in TM1 and seven in TM2 result in functional channels. Interestingly, the majority of the functional mutants display an increased sensitivity to ATP, and in general these perturbations are more pronounced for TM2 when compared with TM1. For TM1 and for the outer half of TM2, the perturbations are consistent with these regions adopting alpha-helical secondary structures. In addition, the greatest perturbations in the gating equilibrium occur for mutations near the outer ends of both TM1 and TM2. Surface biotinylation experiments reveal that all the nonfunctional mutants traffic to the surface membrane at levels comparable to the WT channel, suggesting that these mutations likely disrupt ion conduction or gating. Taken together, these results suggest that the outer parts of TM1 and TM2 are helical and that they move during activation. The observation that the majority of nonconducting mutations are clustered toward the inner end of TM2 suggests a critical functional role for this region.  相似文献   

11.
Alanine-scanning mutagenesis and the whole cell voltage clamp technique were used to investigate the function of the extracellular loop between the second and third transmembrane domains (TM2-TM3) of the gamma-aminobutyric acid type A receptor (GABA(A)-R). A conserved arginine residue in the TM2-TM3 loop of the GABA(A)-R alpha(2) subunit was mutated to alanine, and the mutant alpha(2)(R274A) was co-expressed with wild-type beta(1) and gamma(2S) subunits in human embryonic kidney (HEK) 293 cells. The GABA EC(50) was increased by about 27-fold in the mutant receptor relative to receptors containing a wild-type alpha(2) subunit. Similarly, the GABA EC(50) at alpha(2)(L277A)beta(1)gamma(2S) and alpha(2)(K279A)beta(1)gamma(2S) GABA(A)-R combinations was increased by 51- and 4-fold, respectively. The alpha(2)(R274A) or alpha(2)(L277A) mutations also reduced the maximal response of piperidine-4-sulfonic acid relative to GABA by converting piperidine-4-sulfonic acid into a weak partial agonist at the GABA(A)-R. Based on these results, we propose that alpha(2)(Arg-274) and alpha(2)(Leu-277) are crucial to the efficient transduction of agonist binding into channel gating at the GABA(A)-R.  相似文献   

12.
Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.  相似文献   

13.
Macrophages are unique innate immune cells that play an integral role in the defense of the host by virtue of their ability to recognize, engulf, and kill pathogens while sending out danger signals via cytokines to recruit and activate inflammatory cells. It is becoming increasingly clear that purinergic signaling events are essential components of the macrophage response to pathogen challenges and disorders such as sepsis may be, at least in part, regulated by these important sensors. The activation of the P2X7 receptor is a powerful event in the regulation of the caspase-1 inflammasome. We provide evidence that the inflammasome activation requires “priming” of macrophages prior to ATP activation of the P2X7R. Inhibition of the inflammasome activation by the tyrosine kinase inhibitor, AG126, suggests regulation by phosphorylation. Finally, the P2X7R may also be activated by other elements of the host response such as the antimicrobial peptide LL-37, which adds a new, physiologically relevant agonist to the P2X7R pathway. Therapeutic approaches to inflammation and sepsis will certainly be enhanced by an increased understanding of how purinergic receptors modulate the inflammasomes.  相似文献   

14.
P2X7受体是嘌呤受体中功能独特的一个亚型,为ATP控制的离子通道,在单核细胞、巨噬细胞、中性粒细胞中高表达,被ATP激活后导致K+外流和Ca^2+内流、非选择性膜孔形成,启动一系列信号途径如炎症小体NALP3的活化,丝裂原蛋白激酶途径激活NF-κB增强炎性细胞因子转录,ROS和氮介质的产生,介导IL-1β、IL-6、IL-18、TNF-α、MIP-2、CCL2、HMGB1等多种炎性细胞因子的释放,参与炎症的发生发展,与真菌感染及阿尔茨海默病、类风湿性关节炎、哮喘等炎症性疾病密切相关.  相似文献   

15.
16.
An amino acid residue was found in M2 of gamma-aminobutyric acid (GABA) type A receptors that has profound effects on the binding of picrotoxin to the receptor and therefore may form part of its binding pocket. In addition, it strongly affects channel gating. The residue is located N-terminally to residues suggested so far to be important for channel gating. Point mutated alpha1beta(3) receptors were expressed in Xenopus oocytes and analyzed using the electrophysiological techniques. Coexpression of the alpha(1) subunit with the mutated beta(3) subunit beta(3)L253F led to spontaneous picrotoxin-sensitive currents in the absence of GABA. Nanomolar concentrations of GABA further promoted channel opening. Upon washout of picrotoxin, a huge transient inward current was observed. The reversal potential of the inward current was indicative of a chloride ion selectivity. The amplitude of the inward current was strongly dependent on the picrotoxin concentration and on the duration of its application. There was more than a 100-fold decrease in picrotoxin affinity. A kinetic model is presented that mimics the gating behavior of the mutant receptor. The point mutation in the neighboring residue beta(3)A252V resulted in receptors that displayed an about 6-fold increased apparent affinity to GABA and an about 10-fold reduced sensitivity to picrotoxin.  相似文献   

17.
Of the three major classes of ligand-gated ion channels, nicotinic receptors and ionotropic glutamate receptors are known to be organized as pentamers and tetramers, respectively. The architecture of the third class, P2X receptors, is under debate, although evidence for a trimeric assembly is accumulating. Here we provide biochemical evidence that in addition to the rapidly desensitising P2X1 and P2X3 receptors, the slowly desensitising subtypes P2X2, P2X4, and P2X5 are trimers of identical subunits. Similar (heteromeric) P2X subunits also formed trimers, as shown for co-expressed P2X1 and P2X2 subunits, which assembled efficiently to a P2X1+2 receptor that was exported to the plasma membrane. In contrast, P2X6 subunits, which are incapable of forming functional homomeric channels in Xenopus oocytes, were retained in the ER as apparent tetramers and high molecular mass aggregates. Altogether, we conclude from these data that a trimeric architecture is the structural hallmark of functional homomeric and heteromeric P2X receptors.  相似文献   

18.
The synthesis and pharmacological evaluation of a new series of potent P2X(7) receptor antagonists is disclosed. The compounds inhibit BzATP-mediated pore formation in THP-1 cells. The distribution of the P2X(7) receptor in inflammatory cells, most notably the macrophage, mast cell and lymphocyte, suggests that P2X(7) antagonists have a significant role to play in the treatment of inflammatory disease.  相似文献   

19.
A truncated naturally occurring variant of the human receptor P2X7 was identified in cancer cervical cells. The novel protein (P2X7-j), a polypeptide of 258 amino acids, lacks the entire intracellular carboxyl terminus, the second transmembrane domain, and the distal third of the extracellular loop of the full-length P2X7 receptor. The P2X7-j was expressed in the plasma membrane; it showed diminished ligand-binding and channel function capacities and failed to form pores and mediate apoptosis in response to treatment with the P2X7 receptor agonist benzoyl-ATP. The P2X7-j interacted with the full-length P2X7 in a manner suggesting heterooligomerization and blocked the P2X7-mediated actions. Interestingly, P2X7-j immunoreactivity and mRNA expression were similar in lysates of human cancer and normal cervical tissues, but full-length P2X7 immunoreactivity and mRNA expression were higher in normal than in cancer tissues, and cancer tissues lacked 205-kDa P2X7 immunoreactivity suggesting lack of P2X7 homo(tri)-oligomerization. These results identify a novel P2X7 variant with apoptosis-inhibitory actions, and demonstrate a distinct regulatory property for a truncated variant to antagonize its full-length counterpart through hetero-oligomerization. This may represent a general paradigm for regulation of a protein function by its variant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号