首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Although the analyses of HBV genomic DNA have traditionally been performed with commercial techniques, the high cost and long time consumed have hindered their applications in routinely diagnosis and prognosis of infection. We construct peptide nucleic acid (PNA) piezoelectric biosensor for real-time monitoring of hybridization of hepatitis B virus (HBV) genomic DNA. The PNA probe can combine to target DNA sequences more effectively and specifically than a DNA probe. The PNA probe was designed and immobilized on the surface of the biosensor to substitute the conventional DNA probe for direct detection of HBV genomic DNA without previous amplification by PCR. The hybridization assay was completed in 50 min. The detection limit was 8.6 pg/L and the clinical specificity was 94.44% compared with real time-PCR (RT-PCR). The PNA probe was able to distinguish sequences that differ only in one base. Detection sensitivity can be improved and detection time can be decreased by adding RecA protein-coated complementary ssDNA which complement to HBV gene regions. The QCM system we designed has the advantages of being rapid, label-free and highly sensitive and can be a useful supplement to commercial assay methods in clinical chemistry.  相似文献   

3.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO4, 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO4, 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of ≥100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10−21 M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

4.
Digoxigenin is derived from a plant steroid hormone digoxin found in the plants Digitalis sp. Digoxigenin has been used successfully in labeling nucleic acids. In this experiment we optimized minimum probe requirement for a nonradioactive digoxigenin-based gene detection system in the model plant Arabidopsis thaliana. We showed that 1 μL of labeled probe was sufficient to hybridize onto 1–10 μg of target plasmid DNA. We also examined the sensitivity of labeled probe and showed that 2 μL of labeled probe was not able to hybridize with 1 μg of target DNA, although 2 μL of labeled probe was able to detect target DNA ranging from 2 to 10 μg. To test the efficacy of our optimization protocol, we used 1 μL of labeled plasmid DNA pU16893 harboring an Arabidopsis housekeeping gene elongation factor-1 and showed that the elongation factor-1 gene could be detected in Arabidopsis genome under various environmental conditions. This paper describes a nonradioactive in situ hybridization technique to detect nucleic acids in plants.  相似文献   

5.
The rapid detection of Bacillus anthracis, the causative agent of anthrax disease, has gained much attention since the anthrax spore bioterrorism attacks in the United States in 2001. In this work, a DNA probe functionalized quartz crystal microbalance (QCM) biosensor was developed to detect B. anthracis based on the recognition of its specific DNA sequences, i.e., the 168 bp fragment of the Ba813 gene in chromosomes and the 340 bp fragment of the pag gene in plasmid pXO1. A thiol DNA probe was immobilized onto the QCM gold surface through self-assembly via Au-S bond formation to hybridize with the target ss-DNA sequence obtained by asymmetric PCR. Hybridization between the target DNA and the DNA probe resulted in an increase in mass and a decrease in the resonance frequency of the QCM biosensor. Moreover, to amplify the signal, a thiol-DNA fragment complementary to the other end of the target DNA was functionalized with gold nanoparticles. The results indicate that the DNA probe functionalized QCM biosensor could specifically recognize the target DNA fragment of B. anthracis from that of its closest species, such as Bacillus thuringiensis, and that the limit of detection (LOD) reached 3.5 × 10(2)CFU/ml of B. anthracis vegetative cells just after asymmetric PCR amplification, but without culture enrichment. The DNA probe functionalized QCM biosensor demonstrated stable, pollution-free, real-time sensing, and could find application in the rapid detection of B. anthracis.  相似文献   

6.
Construction, electrochemically biosensing and discrimination of recombinant pEThIL-2 plasmid, with 5839 bp size, on the basis of interleukine-2 (IL-2) DNA insert are described. Plasmid pEThIL-2 was constructed by PCR amplification of IL-2 encoding DNA and subcloning into pET21a(+) vector using BamHI and SacI sites. The recombinant pEThIL-2 plasmid was detected with a label-free DNA hybridization biosensor using a non-inosine substituted probe. The proposed sensor was made up by immobilization of a 20-mer antisense single strand oligonucleotide (chIL-2) related to the human interleukine-2 gene on the pencil graphite electrode (PGE) as a probe and then the sensing of recombinant pEThIL-2 plasmid was conducted by anodic differential pulse voltammetry (ADPV) based on guanine oxidation signal. Selectivity of the detection was assessed with pET21a(+) non-complementary plasmid, with 5443 bp size, lacking IL-2 encoding DNA. Different factors such as electrode activation conditions and washing strategy were tested in order to eliminate the nonspecific adsorption of pET21a(+). We have found that the PGE activation for 300 s produces a condition in which desorption of nonspecifically adsorbed plasmids from the electrode surface can be achieved by 300 s washing of the electrode in 20 mM Tris–HCl buffer solution (pH 7.0) containing 20 mM NaCl. Diagnostic performance of the biosensor is described and the detection limit is found to be 10.31 pg/μL.  相似文献   

7.
We report Hepatitis B Virus (HBV) DNA detection using a silica nanoparticle-enhanced dynamic microcantilever biosensor. A 243-mer nucleotide of HBV DNA precore/core region was used as the target DNA. For this assay, the capture probe on the microcantilever surface and the detection probe conjugated with silica nanoparticles were designed specifically for the target DNA. For efficient detection of the HBV target DNA using silica nanoparticle-enhanced DNA assay, the size of silica nanoparticles and the dimension of microcantilever were optimized by directly binding the silica nanoparticles through DNA hybridization. In addition, the correlation between the applied nanoparticle concentrations and the resonant frequency shifts of the microcantilever was discussed clearly to validate the quantitative relationship between mass loading and resonant frequency shift.HBV target DNAs of 23.1 fM to 2.31 nM which were obtained from the PCR product were detected using a silica nanoparticle-enhanced microcantilever. The HBV target DNA of 243-mer was detected up to the picomolar (pM) level without nanoparticle enhancement and up to the femtomolar (fM) level using a nanoparticle-based signal amplification process. In the above two cases, the resonant frequency shifts were found to be linearly correlated with the concentrations of HBV target DNAs. We believe that this linearity originated mainly from an increase in mass that resulted from binding between the probe DNA and HBV PCR product, and between HBV PCR product and silica nanoparticles for the signal enhancement, even though there is another potential factor such as the spring constant change that may have influenced on the resonant frequency of the microcantilever.  相似文献   

8.
We have designed an electrochemical DNA biosensor based on stem-loop structured probes for enzymatic detection of Pseudomonas aeruginosa 16S ribosomal RNA (rRNA) in composting degradation. The probe modified with a thiol at its 5′ end and a biotin at its 3′ end was immobilized on a gold electrode through self-assembly. The stem-loop structured probes were “closed” when target was absent, then the hybridization of the target induced the conformational changes to “open”, along with the biotin at its 3′ end binding with streptavidin-horseradish peroxidase (HRP), and subsequent quanti?cation of the target was detected via electrochemical detecting the enzymatic product in the presence of substrate. Under the optimum experiment conditions, the amperometric current response to HRP-catalyzed reaction was linearly related to the logarithm of the target nucleic acid concentration, ranging from 0.3 and 600 pg/μL, with the detection limit of 0.012 pg/μL. A correlation coefficient of 0.9960 was identified. The 16S rRNA extracted from P. aeruginosa was analyzed by this proposed sensor. The results were in agreement with the reference values deduced from UV spectrometric data. The biosensor was indicative of good precision, stability, sensitivity, and selectivity.  相似文献   

9.
A novel real-time quantitative polymerase chain reaction (PCR) method using an attached universal template (UT) probe is described. The UT is an approximately 20 base attachment to the 5′ end of a PCR primer, and it can hybridize with a complementary TaqMan probe. One of the advantages of this method is that different target DNA sequences can be detected employing the same UT probe, which substantially reduces the cost of real-time PCR set-up. In addition, this method could be used for simultaneous detection using a 6-carboxy-fluorescein-labeled UT probe for the target gene and a 5-hexachloro-fluorescein-labeled UT probe for the reference gene in a multiplex reaction. Moreover, the requirement of target DNA length for UT–PCR analysis is relatively flexible, and it could be as short as 56 bp in this report, suggesting the possibility of detecting target DNA from partially degraded samples. The UT–PCR system with degenerate primers could also be designed to screen homologous genes. Taken together, our results suggest that the UT–PCR technique is efficient, reliable, inexpensive and less labor-intensive for quantitative PCR analysis.  相似文献   

10.
For the detection of DNA hybridization, a new electrochemical biosensor was developed on the basis of the interaction of hematoxylin with 20-mer deoxyoligonucleotides (from human papilloma virus, HPV). The study was performed based on the interaction of hematoxylin with an alkanethiol DNA probe self-assembled gold electrode (ss-DNA/AuE) and its hybridization form (ds-DNA/AuE). The optimum conditions were found for the immobilization of HPV probe on the gold electrode (AuE) surface and its hybridization with the target DNA. Electrochemical detection of the self-assembled DNA and the hybridization process were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the accumulated hematoxylin at the modified electrode was electroactive. Observing a remarkable difference between the voltammetric signals of the hematoxylin obtained from different hybridization samples (non-complementary, mismatch and complementary DNAs), we confirmed the potential of the developed biosensor in detecting and discriminating the target complementary DNA from non-complementary and mismatch oligonucleotides. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 12.5 nM to 350.0 nM, and the detection limit was 3.8 nM.  相似文献   

11.
Hepatopancreatic parvovirus (HPV) infects the hepatopancreas in penaeid shrimp and retards their growth. The DNA sequence of HPV from Thai shrimp Penaeus monodon (HPVmon) differs from HPV of Penaeus chinensis (HPVchin) by approximately 30%. In spite of this difference, commercial PCR primers (DiagXotics) developed from HPVchin to yield a 350 bp PCR product do give a 732 bp product with HPVmon DNA template. On the other hand, the sensitivity of HPVmon detection with these primers and with hybridization probes designed for HPVchin is significantly lower than it is with HPVchin. To improve sensitivity for HPVmon detection, we used the sequence of the 732 bp HPVmon PCR amplicon described above to develop specific PCR primers (H441F and H441R) and hybridization probe. The primers could detect as little as 1 fg of purified HPVmon DNA while the 441 bp digoxygenin-labeled PCR product gave strong, specific reactions with in situ hybridization and with hybridization blots. In contrast, negative results were obtained using DNA from all other pathogens tested and from DNA of P. monodon. Supernatant solution from boiled, fresh shrimp fecal and postlarval samples homogenized in 0.025% NaOH/0.0125% SDS could be used to detect as little as 0.1 pg HPVmon DNA by the PCR reaction. By dot blot hybridization, a visible signal was obtained with purified HPVmon DNA at 0.01 pg, but detection in spiked feces and postlarval samples was only 1 and 0.1 pg, respectively.  相似文献   

12.
Bemisia tabaci (Gennadius) is a rapidly evolving species complex, and is small in size and difficult to identify quickly and accurately. For the accurate identification and effective prevention of this species, the specific PCR method based on the mitochondrial DNA cytochrome oxidase subunit I (mt DNA COI) gene was used in the present study to evaluate rapid molecular detection technological applications for Mediterranean (MED) species. The MED was targeted and whitefly species from different regions were used as references. Fragments of the mt DNA COI gene of the MED and other closely related species were amplified with universal primers. Species-specific mitochondrial DNA cytochrome oxidase subunit I (SS-COI) primers BQLF/BQLR and BQJF/BQJR were designed from variable sites of MED and other whitefly species partial COI gene sequences. Subsequently, the lengths of target fragments were amplified by two pairs of SS-COI primers. Meanwhile, the accuracy, specificity and sensitivity of SS-COI primers were determined using various life stages of the MED and other related species collected from different locations. The primer pairs BQLF/BQLR and BQJF/BQJR generated 334 bp and 483 bp amplified fragment length respectively. Accuracy test results showed that primers can detect the MED single-head adults and also accurately detect single-egg and first instar, second instar and third instar nymphs, MED pupae, etc. Specific detection results demonstrated that the primers were able to amplify the MED but not the following species/populations: Middle East-Asia Minor 1 (MEAM1), Asia I, Asia II 1, Asia II 6 and Asia II 7, Aleurocanthus spiniferus (Quaintanca), A. camelliae, Siphoninus phillyreae, Aleuroclava rhododendri, A. thysanospermi, Aleurolobus taonabae, Dialeurodes citri and Trialeurodes vaporariorum (Westwood) in different areas. Sensitivity detection results showed that primers can detect the minimum threshold of 2,160 pg/μl and 1.38 pg/μl, respectively (equivalent to 1/1280 and 1/2000000 adult). This technique solves the problem that MED cannot be identified based on morphology. This method simultaneously adopted SS-COI PCR technological applications that improved detection accuracy and saved detection time.  相似文献   

13.
Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management.  相似文献   

14.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

15.
Geng P  Zhang X  Teng Y  Fu Y  Xu L  Xu M  Jin L  Zhang W 《Biosensors & bioelectronics》2011,26(7):3325-3330
A new type of DNA sequence-specific electrochemical biosensor based on magnetic beads for the detection of Escherichia coli is reported in the present work. Alginic acid-coated cobalt magnetic beads, capped with 5'-(NH(2)) oligonucleotide and employed not only for magnetic separation but also as the solid adsorbent, were used as DNA probes to hybridize with the target E. coli DNA sequence. This assay was specific for E. coli detection depending on the uid A gene, which encodes for the enzyme β-d-glucuronidase produced by E. coli strains. When daunomycin (DNR) was used as DNA hybridization indicator, the target sequences of E. coli hybridized with the probes resulted in the decrease of DNR reduction peak current, which was proportional to the E. coli concentration. The optimization of the hybridization detection was carried out and the specificity of the probes was also demonstrated. This DNA biosensor can be employed to detect a complementary target sequence for 3.0×10(-10) mol/L and denatured PCR products for 0.5 ng/μL. The linear range of the developed biosensor for the detection of E. coli cells was from 1.0×10(2) to 2.0×10(3) cells/mL with a detection limit of 50 cells/mL. After a brief enrichment process, a concentration of 10 cells/mL E. coli in real water samples was detected by the electrochemical biosensor.  相似文献   

16.
Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor for the detection of the hybridization of CaMV 35S promoter sequence (P35S) was investigated for the screening of genetically modified organisms (GMOs). Attention was focused on the choice of the coating chemistry that could be used for the immobilization of probe sequences on the gold surface of the quartz crystal. Two immobilization procedures were tested and compared considering the amount of the immobilized P35S probe and the extent of the hybridization reaction with the target oligonucleotide. In wet chemistry procedure, the interaction between the thiol and gold for the immobilization of a thiolated probe was employed. Direct surface functionalization of piezoelectric quartz crystals were achieved in 13.56 MHz plasma polymerization reactor utilising ethylenediamine (EDA) precursors for the immobilization of amined probes. Results indicated that immobilization of a thiolated probe provides better immobilization characteristics and higher sensitivity for the detection of the hybridization reaction. The thiolated probe was used for the detection of P35S sequence in PCR-amplified DNAs and in real samples of pflp (ferrodoxin like protein)-gene inserted tobacco plants. Fragmentation of the genomic DNAs were achieved by digestion with restriction endonucleases and ultrasonication. The results obtained from the fragmented genomic DNAs demonstrated that it is possible to detect the target sequence directly in non-amplified genomic DNAs by using the developed QCM-based DNA biosensor system. The developed QCM-based DNA biosensor represented promising results for a real-time, label-free, direct detection of DNA samples for the screening of GMOs.  相似文献   

17.
We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down’s syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50–70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.  相似文献   

18.
The “unprotected” Pt nanoclusters (average size 2 nm) mixed with the nanoscale SiO2 particles (average size 13 nm) were used as a glucose oxidase immobilization carrier to fabricate the amperometric glucose biosensor. The bioactivity of glucose oxidase (GOx) immobilized on the composite was maintained and the as-prepared biosensor demonstrated high sensitivity (3.85 μA mM−1) and good stability in glucose solution. The Pt–SiO2 biosensor showed a detection limit of 1.5 μM with a linear range from 0.27 to 4.08 mM. In addition, the biosensor can be operated under wide pH range (pH 4.9–7.5) without great changes in its sensitivity. Cyclic voltammetry measurements showed a mixed controlled electrode reaction.  相似文献   

19.
In this study, a novel DNA electrochemical probe (locked nucleic acid, LNA) was designed and involved in constructing an electrochemical DNA biosensor for detection of promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene in acute promyelocytic leukemia for the first time. This biosensor was based on a 'sandwich' sensing mode, which involved a pair of LNA probes (capture probe immobilized at electrode surface and biotinyl reporter probe as an affinity tag for streptavidin-horseradish peroxidase (streptavidin-HRP). Since biotin can be connected with streptavidin-HRP, this biosensor offered an enzymatically amplified electrochemical current signal for the detection of target DNA. In the simple hybridization system, DNA fragment with its complementary DNA fragment was evidenced by amperometric detection, with a detection limit of 74 fM and a linear response range of 0.1-10 pM for synthetic PML/RARα fusion gene in acute promyelocytic leukemia (APL). Otherwise, the biosensor showed an excellent specificity to distinguish the complementary sequence and different mismatch sequences. The new pattern also exhibited high sensitivity and selectivity in mixed hybridization system.  相似文献   

20.
A novel glucose biosensor was developed, based on the immobilization of glucose oxidase (GOD) with cross-linking in the matrix of bovine serum albumin (BSA) on a Pt electrode, which was modified with gold nanoparticles decorated Pb nanowires (GNPs-Pb NWs). Pb nanowires (Pb NWs) were synthesized by an l-cysteine-assisted self-assembly route, and then gold nanoparticles (GNPs) were attached onto the nanowire surface through –SH–Au specific interaction. The morphological characterization of GNPs-Pb NWs was examined by transmission electron microscopy (TEM). Cyclic voltammetry and chronoamperometry were used to study and to optimize the electrochemical performance of the resulting biosensor. The synergistic effect of Pb NWs and GNPs made the biosensor exhibit excellent electrocatalytic activity and good response performance to glucose. The effects of pH and applied potential on the amperometric response of the biosensor have been systemically studied. In pH 7.0, the biosensor showed the sensitivity of 135.5 μA mM−1 cm−2, the detection limit of 2 μM (S/N = 3), and the response time <5 s with a linear range of 5–2200 μM. Furthermore, the biosensor exhibits good reproducibility, long-term stability and relative good anti-interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号