首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peter W. Schiller 《Life sciences》2010,86(15-16):598-603
Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called “bivalent” ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt1[DALDA] with triple action as a µ opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed µ opioid agonist/δ opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a µ opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented.  相似文献   

2.
The bivalent ligand approach, which assumes that two pharmacophores are connected by a spacer, was used to design receptor type-selective ligands for opioid receptors. The first two opioid peptide bivalent ligands with different spacer lengths containing different numbers of hydroxyl groups, (Tyr-D-Ala-Gly-Phe-NH-CH2-CHOH-)2 (Tyr-D-Ala-Gly-Phe-NH-CH2-CHOH-CHOH-)2, were synthesized and their binding to mu, delta, and kappa opioid receptors was characterized. Both analogues were found to possess high opioid in vitro activities. The length of the hydrophilic spacer does not affect the affinity for delta receptors, whereas shorter spacer length increases affinity for mu and even more so for kappa receptors. Thus receptor type-selective peptides for opioid receptors can be designed using the bivalent approach.  相似文献   

3.
Nociceptin is an endogenous agonist ligand of the ORL1 (opioid receptor-like 1) receptor, and its antagonist is a potential target of therapeutics for analgesic and antineuropathy drugs. Ac-RYYRIK-NH(2) is a hexapeptide isolated from the peptide library as an antagonist that inhibits the nociceptin activities mediated through ORL1. However, the structural elements required for this antagonist activity are still indeterminate. In the present study, we evaluated the importance of the acetyl-methyl group in receptor binding and activation, examining the peptides acyl-RYYRIK-NH(2), where acyl (R-CO) possesses a series of alkyl groups, R=C(n)H(2n+1) (n=0-5). The isovaleryl derivative with the C(4)H(9) (=(CH(3))(2)CHCH(2)-) group was found to reveal a high receptor-binding affinity and a strong antagonist nature. This peptide achieved a primary goal of eliminating the agonist activity of Ac-RYYRIK-NH(2) and producing pure antagonist activity.  相似文献   

4.
In an effort to develop antagonists for κ–μ opioid receptor heterodimers, a series of bivalent ligands 36 containing κ- and μ-antagonist pharmacophores were designed and synthesized. Evaluation of the series in HEK-293 cells revealed 4 (KMN-21) to selectively antagonize the activation of κ–μ heterodimers, suggesting possible bridging of receptors when the bivalent ligand spacer contains 21 atoms.  相似文献   

5.
A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors, and their functional activities were determined at κ and μ receptors in [(35)S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (K(i) values less than 1nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity K(i) values of 0.089nM at the μ receptor and 0.073nM at the κ receptor. All of the morphinan-derived ligands were found to be partial κ and μ agonists; ATPM-derived ligands 12 and 11 were found to be full κ agonists and partial μ agonists.  相似文献   

6.
Merging two arylamidoalkyl substituted phenylpiperazines as prototypical recognition elements for dopamine D(2)-like receptors by oligoethylene glycol linkers led to a series of bivalent ligands. These dimers were investigated in comparison to their monomeric analogues for their dopamine D(2long), D(2short), D(3) and D(4) receptor binding. Radioligand binding experiments revealed strong bivalent effects for some para-substituted benzamide derivatives. For the D(3) subtype, the target compounds 32, 34 and 36 showed an up to 70-fold increase of affinity and a substantial enhancement of subtype selectivity when compared to the monovalent analogue 24. Analysis of the binding curves displayed Hill slopes very close to one indicating that the bivalent ligands displace 1equiv of radioligand. Obviously, the two pharmacophores occupy an orthosteric and an allosteric binding site rather than adopting a receptor-bridging binding mode.  相似文献   

7.
The anticonvulsive activity of nociceptin, endogenous OP4 receptors agonist was investigated in pentylenetetrazole (PTZ), N-methyl D-aspartic acid (NMDA), bicucculine (BCC) and electrically evoked seizure models of experimental epilepsy. Nociceptin, at the dose of 10 nmol, suppressed the clonic seizures induced by PTZ, NMDA and BCC. [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 which has been proposed to be selective antagonist OP4 receptors, did not prevent the action of nociceptin. The effect of [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 on seizures induced by PTZ, NMDA and BCC was very similar to that of nociceptin. These data support the hypothesis that it possesses agonistic properties. Naloxone did not reverse the anticonvulsive action of nociceptin as well as [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 which excludes the participation of opioid receptor in this action. On the other hand in the electroconvulsive model of generalized seizures, nociceptin as well as [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 influenced neither the electroconvulsive threshold nor the maximal electroshock test. The data suggest that nociceptin and [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 can exert anticonvulsive action. These properties depend on OP4 but not opioid receptors activation.  相似文献   

8.
A series of pyridomorphinans possessing an aryl (10a-s) or heteroaryl (11a-h) substituent at the 5'-position of the pyridine ring of 17-cyclopropylmethyl-4,5 alpha-epoxypyrido[2',3':6,7]morphinan was synthesized and evaluated for binding and functional activity at the opioid delta, mu, and kappa receptors. All of these pyridomorphinans bound with higher affinity at the delta site than at mu or kappa sites. The binding data on isomeric compounds revealed that there exists greater bulk tolerance for substituents placed at the o-position of the phenyl ring than at m- or p-positions. Among the ligands examined, the 2-chlorophenyl (10l), 2-nitrophenyl (10n), 2-pyridyl (11a), and 4-quinolinyl (11g) compounds bound to the delta receptor with subnanomolar affinity. Compound 10c with the p-tolyl substituent displayed the highest mu/delta selectivity (ratio=42) whereas compound 10l with the 2-chlorophenyl substituent displayed the highest kappa/delta selectivity (ratio=23). At 10 microM concentration, the in vitro functional activity determined using [(35)S]GTP-gamma-S binding assays showed that all of the compounds were antagonists devoid of any significant agonist activity at the delta, mu, and kappa receptors. Antagonist potency determinations of three selected ligands revealed that the p-tolyl compound 10c is a potent delta selective antagonist. In the [(35)S]GTP-gamma-S assays this compound had a functional antagonist K(i) value of 0.2, 4.52, and 7.62 nM at the delta, mu, and kappa receptors, respectively. In the smooth muscle assays 10c displayed delta antagonist potency with a K(e) value of 0.88 nM. As an antagonist, it was 70-fold more potent at the delta receptors in the MVD than at the mu receptors in the GPI. The in vitro delta antagonist profile of this pyridomorphinan 10c resembles that of the widely used delta selective antagonist ligand naltrindole.  相似文献   

9.
The biological activities of a series of dimeric analogs of des-Gly10-[D-Lys6]GnRH-NHEt cross-linked at Lys6 by malonic acid and elongated by Gly, i.e., HO-Glyn-CO-CH2-CO-Glyn-OH (n = 0, 1, 2), were analyzed in vitro and in vivo. All three dimeric analogs displayed increased activity in receptor binding and in LH release assays than the original monomer, and dimer Ib (n = 1) showed the highest potency in vitro. This compound also showed the highest activity in the in vivo postcoital assay, in which GnRH agonist potency is measured by inhibition of pregnancy. These results indicate that GnRH receptor activation is substantially enhanced by dimerization of the agonist ligand.  相似文献   

10.
We have screened a synthetic peptide combinatorial library composed of 2 x 10(7) beta-turn-constrained peptides in binding assays on four structurally related receptors, the human opioid receptors mu, delta, and kappa and the opioid receptor-like ORL1. Sixty-six individual peptides were synthesized from the primary screening and tested in the four receptor binding assays. Three peptides composed essentially of unnatural amino acids were found to show high affinity for human kappa-opioid receptor. Investigation of their activity in agonist-promoted stimulation of [(35)S]guanosine 5'-3-O-(thio)triphosphate binding assay revealed that we have identified the first inverse agonist as well as peptidic antagonists for kappa-receptors. To fine-tune the potency and selectivity of these kappa-peptides we replaced their turn-forming template by other turn mimetic molecules. This "turn-scan" process allowed the discovery of compounds with modified selectivity and activity profiles. One peptide displayed comparable affinity and partial agonist activity toward all four receptors. Interestingly, another peptide showed selectivity for the ORL1 receptor and displayed antagonist activity at ORL1 and agonist activity at opioid receptors. In conclusion, we have identified peptides that represent an entirely new class of ligands for opioid and ORL1 receptors and exhibit novel pharmacological activity. This study demonstrates that conformationally constrained peptide combinatorial libraries are a rich source of ligands that are more suitable for the design of nonpeptidal drugs.  相似文献   

11.
The peptide CO-NH function was replaced by a trans carbon-carbon double bond or by a CH2-CH2 isostere in enkephalin analogues of DADLE, DCDCE-NH2 or DPDPE. In DADLE the 2-3 and the 3-4 peptide bond was modified, whereas in the cyclic analogues the Gly3-Phe4 bond was replaced by the isosteres Gly psi (E,CH = CH)Phe [5-amino-2-(phenylmethyl)-3(E)-pentenoic acid] or Gly psi (CH2CH2)Phe [5-amino-2-(phenylmethyl)pentanoic acid]. In general, the modification results in a drop in potency which is the largest for the flexible CH2-CH2 replacement. The Gly3 psi (E,CH = CH)Phe4 DCDCE-NH2 analogue retains considerable potency. These results confirm the importance of the peptide function at the 2-3 and 3-4 position in enkephalin analogues for biological potency.  相似文献   

12.
In three experiments, we examined endogenous opioid inhibition of luteinizing hormone (LH) secretion during the bovine estrous cycle. An increase in serum LH in response to the opioid antagonist naloxone (Na; 1 mg/kg i.v.) was the criterion for opioid inhibition. Estrous cycles were synchronized via prostaglandin administration. In Experiment 1, mean serum LH was not different during the luteal phase in yearling heifers (n = 6/group) at Hour 1 after Nal (2.1 ng/ml) compared to controls (1.8 ng/ml). However, LH peak amplitude was increased (p less than 0.05) in the Nal compared to the control group. Serum LH was increased (p less than 0.01) during the follicular phase in heifers at Hour 1 post-Nal compared to controls (4.7 and 3.5 ng/ml, respectively). Again, Nal administration was followed by increased (p less than 0.05) LH pulse amplitude compared to control. In Experiment 2, no effect of Nal upon serum LH was detected in cows (n = 9) during proestrus, metestrus, midluteal and late luteal portions of the estrous cycle. In Experiment 3, the LH response to Nal was examined simultaneously in yearling heifers and cows (n = 5/group) during the luteal and follicular phases. Serum LH increased (p less than 0.001) during Hour 1 post-Nal in heifers compared to cows during the follicular (3.4 vs. 1.7 ng/ml) but not during the luteal phase. LH pulse amplitude also increased (p less than 0.05) during Hour 1 post-Nal in heifers compared to cows during the luteal (2.5 vs. 1.1 ng/nl and follicular (2.5 vs. 1.3 ng/ml) phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Once opioid receptor dimers were postulated, a goal has been to synthesize and screen novel opioids, with the hope of furthering our knowledge of the structure-activity relationship of opioid ligands with the opioid receptors. The aim of the current study was to address whether two isomeric bivalent ligands would have pharmacological differences after central administration, in vivo. The two compounds, (−) bis(N-cyclobutylmethyl-morphinan-3-yl) sebacoylate dihydrochloride (MCL-144) and 1−((+)N-cyclobutylmethylmorphinan-3-yl)-10-((−) N-cyclobutylmethylmorphinan-3-yl)sebacolyate (MCL-193) are each linked by a 10-carbon chain ester. The active (−) enantiomer for both ligands is 3-hydroxy-N-cyclobutylmethyl morphinan ((−)MCL-101), a N-cyclobutylmethyl analogue of cyclorphan (J Med Chem 43:114–122, 2000). MCL-144 contains two active levo rotatory (−)(−) pharmacophores, while MCL-193 contains one active (−) and one inactive (+) pharmacophore of MCL-101. In vitro analysis demonstrated that all three compounds, (−)(−)MCL-144, (+)(−)MCL-193 and (−)MCL-101 were κ agonists and μ partial agonists. (−)(−)MCL-144 and (−)MCL-101 had much higher affinity for both the μ and κ opioid receptors compared to (+)(−)MCL-193. In vivo, (−)(−)MCL-144 and (+)(−)MCL-193 produced full dose–response curves, in the 55°C tail-flick test, with each compound having an ED50 value of 3.0 nmol after intracerebroventricular (i.c.v.) administration. The analgesic properties of both compounds were antagonized by the μ-selective antagonist, β-funaltrexamine and the κ-selective antagonist nor-binaltorphimine. Concomitant, i.c.v., administration of either (−)(−)MCL-144 or (+)(−)MCL-193 with morphine, did not significantly antagonize morphine-induced antinociception at any dose tested. In antinociceptive tests, (−)(−)MCL-144 and (+)(−)MCL-193 had the same pharmacological properties, demonstrating that having two active pharmacophores separated by a 10-carbon spacer group did not increase the antinociceptive efficacy of the compound. Additionally, it was also of interest to compare (−)(−)MCL-145 and (−)(−)MCL-144, as the only difference between these bivalent ligands is the spacer region connecting the two pharmacophores, yet (−)(−)MCL-145 produced an ED50 value 10-fold lower than (−)(−)MCL-144 (ED50 values = 0.3 nmol and 3.0 nmol, respectively). Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

14.
The discovery of the prototype delta opioid antagonists TIPP (H-Tyr-Tic-Phe-Phe-OH) and TIP (H-Tyr-Tic-Phe-OH) in 1992 was followed by extensive structure-activity relationship studies, leading to the development of analogues that are of interest as pharmacological tools or as potential therapeutic agents. Stable TIPP-derived delta opioid antagonists with subnanomolar delta receptor binding affinity and extraordinary delta receptor selectivity include TIPP[Psi] (H-Tyr-TicPsi[CH(2)NH]Phe-Phe-OH] and TICP[Psi] (H-Tyr-TicPsi[CH(2)NH]Cha-Phe-OH); Cha: cyclohexylalanine), which are widely used in opioid research. Theoretical conformational analyses in conjunction with the pharmacological characterization of conformationally constrained TIPP analogues led to a definitive model of the receptor-bound conformation of H-Tyr-Tic-(Phe-Phe)-OH-related delta opioid antagonists, which is characterized by all-trans peptide bonds. Further structure-activity studies revealed that the delta antagonist vs delta agonist behavior of TIP(P)-derived compounds depended on very subtle structural differences in diverse locations of the molecule and suggested a delta receptor model involving a number of different inactive receptor conformations. A further outcome of these studies was the identification of a new class of potent and very selective dipeptide delta agonists of the general formula H-Tyr-Tic-NH-X (X = arylalkyl), which are of interest for drug development because of their low molecular weight and lipophilic character. Most interestingly, TIPP analogues containing a C-terminal carboxamide group displayed a mixed mu agonist/delta antagonist profile, and thus were expected to be analgesics with a low propensity to produce tolerance and physical dependence. This turned out to be the case with the TIPP-derived mu agonist/delta antagonist DIPP-NH(2)[Psi] (H-Dmt-TicPsi[CH(2)NH]Phe-Phe-NH(2)); Dmt: 2',6'- dimethyltyrosine).  相似文献   

15.
16.
Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25 ± 10 Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2′-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands.  相似文献   

17.
We have identified compound 1 as a novel ligand for opioid and melanocortin (MC) receptors, which is derived from the overlapping of a well known structure for the delta opioid receptor, 2,6-dimethyltyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic), and a small molecule for the MC receptor, Tic-DPhe(p-Cl)-piperidin-4-yl-N-phenyl-propionamide. Ligand 1 showed that there is an overlapping pharmacophore between opioid and MC receptors through the Tic residue. The ligand displayed high biological activities at the delta opioid receptor (Ki = 0.38 nM in binding assay, EC(50) = 0.48 nM in GTP-gamma-S binding assay, IC(50) = 74 nM in MVD) as an agonist instead of an antagonist and showed selective binding affinity (IC(50) = 2.3 muM) at the MC-3 receptor rather than at the MC-5 receptor. A study of the structure-activity relationships demonstrated that the residues in positions 2, 3, and the C-terminus act as a pharmacophore for the MC receptors, and the residues in positions 1 and 2 act as a pharmacophore for the opioid receptors. Thus, this structural construct can be used to prepare chimeric structures with adjacent or overlapping pharmacophores for opioid and MC receptors.  相似文献   

18.
There is evidence to indicate that opioid compounds with mixed mu agonist/delta antagonist properties are analgesics with low propensity to produce tolerance and physical dependence. A chimeric peptide containing the potent and selective mu agonist H-Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]DALDA) (Dmt=2',6'-dimethyltyrosine) and the potent and selective delta antagonist H-Tyr-TicPsi[CH2-NH]Cha-Phe-OH (TICP[Psi]) (Cha=cyclohexylalanine), connected 'tail-to-tail' via a short linker, was synthesized using a combination of solid-phase and solution techniques. The resulting peptide, H-Dmt-->D-Arg-->Phe-->Lys-NH-CH2-CH2-NH-Phe<--Cha[NH-CH2]PsiTic<--Tyr-H, showed the expected mu agonist/delta antagonist profile in the guinea-pig ileum and mouse vas deferens assays. Its mu and delta receptor binding affinities were in the low nanomolar range, as determined in rat brain membrane binding assays.  相似文献   

19.
Hruby VJ  Agnes RS 《Biopolymers》1999,51(6):391-410
The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors. In turn, this had led to insights into the three-dimensional pharmacophore for opioid receptors. In this article we review and discuss some of the developments that have led to potent, selective, and stable peptide and peptidomimetic ligands that are highly potent and selective, and that have delta agonist, mu antagonist, and kappa agonist biological activities (other authors in this issue will discuss the development of other types of activities and selectivities). These have led to ligands that provide unique insight into opioid pharmacophores and the critical roles opioid ligands and receptor scan play in pain, addiction, and other human maladies.  相似文献   

20.
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号