首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renger JJ  Egles C  Liu G 《Neuron》2001,29(2):469-484
Formation of glutamatergic synapses entails development of "silent" immature contacts into mature functional synapses. To determine how this transformation occurs, we investigated the development of neurotransmission at single synapses in vitro. Maturation of presynaptic function, assayed with endocytotic markers, followed accumulation of synapsin I. During this period, synaptic transmission was primarily mediated by activation of NMDA receptors, suggesting that most synapses were functionally silent. However, local glutamate application to silent synapses indicated that these synapses contained functional AMPA receptors, suggesting a possible presynaptic locus for silent transmission. Interference with presynaptic vesicle fusion by exposure to tetanus toxin reverted functional to silent transmission, implicating SNARE-mediated fusion as a determinant of the ratio of NMDA:AMPA receptor activation. This work reveals that functional maturation of synaptic transmission involves transformation of presynaptic silent secretion into mature synaptic transmitter release.  相似文献   

2.
Liauw J  Wang GD  Zhuo M 《生理学报》2003,55(4):373-380
谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触。在正常条件下,大多数的突触反应是由谷氨酸的AMPA受体传递的。NMDA受体在静息电位下为镁离子抑制。在被激活时,NMDA受体主要参与突触的可塑性变化。但是,许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应,提示NMDA受体可能参与静息状态的生理功能。此文中,我们在离体的前额扣带回脑片上进行电生理记录,发现NMDA受体参与前额扣带回的突触传递。在重复刺激或近于生理性温度时,NMDA受体传递的反应更为明显。本文直接显示了NMDA受体参与前额扣带回的突触传递,并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用。  相似文献   

3.
Gray JA  Shi Y  Usui H  During MJ  Sakimura K  Nicoll RA 《Neuron》2011,71(6):1085-1101
During development there is an activity-dependent switch in synaptic N-Methyl-D-aspartate (NMDA) receptor subunit composition from predominantly GluN2B to GluN2A, though the precise role of this?switch remains unknown. By deleting GluN2 subunits in single neurons during synaptogenesis, we find that both GluN2B and GluN2A suppress AMPA receptor expression, albeit by distinct means. Similar to GluN1, GluN2B deletion increases the number of functional synapses, while GluN2A deletion increases the strength of unitary connections without affecting the number of functional synapses. We propose a model of excitatory synapse maturation in which baseline activation of GluN2B-containing receptors prevents premature synapse maturation until correlated activity allows induction of functional synapses. This activity also triggers the switch to GluN2A, which dampens further potentiation. Furthermore, we analyze the subunit composition of synaptic NMDA receptors in CA1 pyramidal cells, provide electrophysiological evidence for?a large population of synaptic triheteromeric receptors, and estimate the subunit-dependent open probability.  相似文献   

4.
We have shown that the synapse maturation phase of synaptogenesis is a model for synaptic plasticity that can be particularly well-studied in chicken forebrain because for most forebrain synapses, the maturation changes occur slowly and are temporally well-separated from the synapse formation phase. We have used the synapse maturation phase of neuronal development in chicken forebrain to investigate the possible link between changes in the morphology and biochemical composition of the postsynaptic density (PSD) and the functional properties of glutamate receptors overlying the PSD. Morphometric studies of PSDs in forebrains and superior cervical ganglia of chickens and rats have shown that the morphological features of synapse maturation are characteristic of a synaptic type, but that the rate at which these changes occur can vary between types of synapses within one animal and between synapses of the same type in different species. We have investigated, during maturation in the chicken forebrain, the properties of the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptors, which are concentrated in the junctional membranes overlying thick PSDs in the adult. There was no change in the number of NMDA receptors during maturation, but there was an increase in the rate of NMDA-stimulated uptake of 45Ca2+ into brain prisms. This functional change was not seen with the other ionotropic subtypes of the glutamate receptor and was NMDA receptor-mediated. The functional change also correlated with the increase in thickness of the PSD during maturation that has previously been shown to be due to an increase in the amount of PSD associated Ca(2+)-calmodulin stimulated protein kinase II (CaM-PK II). Our results provide strong circumstantial evidence for the regulation of NMDA receptors by the PSD and implicate changing local concentrations of CaM-PK II in this process. The results also indicate some of the ways in which properties of existing synapses can be modified by changes at the molecular level.  相似文献   

5.
Activity coregulates quantal AMPA and NMDA currents at neocortical synapses   总被引:18,自引:0,他引:18  
AMPA and NMDA receptors are coexpressed at many central synapses, but the factors that control the ratio of these two receptors are not well understood. We recorded mixed miniature or evoked synaptic currents arising from coactivation of AMPA and NMDA receptors and found that long-lasting changes in activity scaled both currents up and down proportionally through changes in the number of postsynaptic receptors. The ratio of NMDA to AMPA current was similar at different synapses onto the same neuron, and this relationship was preserved following activity-dependent synaptic scaling. These data show that AMPA and NMDA receptors are tightly coregulated by activity at synapses at which they are both expressed and suggest that a mechanism exists to actively maintain a constant receptor ratio across a neuron's synapses.  相似文献   

6.
Overproduction and pruning during development is a phenomenon that can be observed in the number of organisms in a population, the number of cells in many tissue types, and even the number of synapses on individual neurons. The sculpting of synaptic connections in the brain of a developing organism is guided by its personal experience, which on a neural level translates to specific patterns of activity. Activity-dependent plasticity at glutamatergic synapses is an integral part of neuronal network formation and maturation in developing vertebrate and invertebrate brains. As development of the rodent forebrain transitions away from an over-proliferative state, synaptic plasticity undergoes modification. Late developmental changes in synaptic plasticity signal the establishment of a more stable network and relate to pronounced perceptual and cognitive abilities. In large part, activation of glutamate-sensitive N-methyl-d-aspartate (NMDA) receptors regulates synaptic stabilization during development and is a necessary step in memory formation processes that occur in the forebrain. A developmental change in the subunits that compose NMDA receptors coincides with developmental modifications in synaptic plasticity and cognition, and thus much research in this area focuses on NMDA receptor composition. We propose that there are additional, equally important developmental processes that influence synaptic plasticity, including mechanisms that are upstream (factors that influence NMDA receptors) and downstream (intracellular processes regulated by NMDA receptors) from NMDA receptor activation. The goal of this review is to summarize what is known and what is not well understood about developmental changes in functional plasticity at glutamatergic synapses, and in the end, attempt to relate these changes to maturation of neural networks.  相似文献   

7.
At several cortical synapses glutamate release events can be mediated exclusively by NMDA receptors, with no detectable contribution from AMPA receptors. This observation was originally made by comparing the trial-to-trial variability of the two components of synaptic signals evoked in hippocampal neurons, and was subsequently confirmed by recording apparently pure NMDA receptor-mediated EPSCs with stimulation of small numbers of axons. It has come to be known as the 'silent synapse' phenomenon, and is widely assumed to be caused by the absence of functional AMPA receptors, which can, however, be recruited into the postsynaptic density by long-term potentiation (LTP) induction. Thus, it provides an important impetus for relating AMPA receptor trafficking mechanisms to the expression of LTP, a theme that is taken up elsewhere in this issue. This article draws attention to several findings that call for caution in identifying silent synapses exclusively with synapses without AMPA receptors. In addition, it attempts to identify several missing pieces of evidence that are required to show that unsilencing of such synapses is entirely accounted for by insertion of AMPA receptors into the postsynaptic density. Some aspects of the early stages of LTP expression remain open to alternative explanations.  相似文献   

8.
GABA excites immature neurons and inhibits adult ones, but whether this contributes to seizures in the developing brain is not known. We now report that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional. In the immature hippocampus, seizures generated with functional GABAergic synapses include fast oscillations that are required to transform a naive network to an epileptic one: blocking GABA receptors prevents the long-lasting sequels of seizures. In contrast, in adult neurons, full blockade of GABA(A) receptors generates epileptogenic high-frequency seizures. Therefore, purely glutamatergic seizures are not epileptogenic in the developing hippocampus. We suggest that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergic synapses are required for that purpose. We suggest that the synergistic actions of GABA and NMDA receptors trigger the cascades involved in epileptogenesis in the developing hippocampus.  相似文献   

9.
K A Jones  R W Baughman 《Neuron》1991,7(4):593-603
N-methyl-D-aspartate (NMDA) and non-NMDA receptors play a key role in synaptic transmission and plasticity in the vertebrate central nervous system. Previous studies have suggested that although both receptor types are present at synapses, the NMDA receptors may be relatively uniformly distributed. We have combined iontophoretic mapping of NMDA and non-NMDA receptors with immunohistochemical localization of synaptic vesicles along dendrites of single neocortical neurons to determine the relationship between NMDA and non-NMDA receptor distribution and the location of synapses. We find that when corrections for glutamate diffusion are made, NMDA responses are concentrated at focal "hot spots" that coincide with non-NMDA hot spots and that there is an excellent correlation between these hot spots and synapses.  相似文献   

10.
Intraperitoneal injection of 1 mg/kg reserpine into rats caused the development of behavioral depression that was especially clearly pronounced 24 h after injection. Under such conditions, induction of long-term potentiation of synaptic transmission was suppressed, the development of long-term depression in glutamatergic synapses of pyramidal neurons of the hippocampal CA1 area and layers II/III of the parietal cortex was facilitated, and metaplasticity threshold (θM) was shifted to the right. Such modifications of plasticity and metaplasticity of glutamatergic synapses were determined by changes in the functional state of postsynaptic NMDA receptors, which was confirmed by a decrease in the duration of NMDA component of field EPSPs generated in the studied neurons and by an increase in the sensitivity of this component to the action of a nonselective blocker of NMDA receptors, ketamine. Simultaneously, the sensitivity to zinc and haloperidol, which are selective with respect to NMDA receptors with the subunit composition NR1/NR2B, decreased. It is hypothesized that, under conditions of depression, either replacement of a part of NR2B subunits in the structure of NMDA receptors by NR2A subunits or biochemical inactivation of NMDA receptors containing NR2B subunit, as well as a decrease in the clearance of transmitter in glutamatergic synapses, occur; these events determine the impairment of plastic properties of the latter contacts. Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 214–221, May–June, 2007.  相似文献   

11.
Glutamate is the main neurotransmitter released at synapses in the central nervous system of vertebrates. Its excitatory role is mediated through activation of specific glutamatergic ionotropic receptors, among which the N-methyl-d-aspartate (NMDA) receptor subtype has attracted considerable attention in recent years. Substantial progress has been made in elucidating the roles these receptors play under physiological and pathological conditions and in our understanding of the functional, structural, and pharmacological properties of NMDA receptors. Many pharmacological compounds have been identified that affect the activity of NMDA receptors, including neurosteroids. This review summarizes our knowledge about molecular mechanisms underlying the neurosteroid action at NMDA receptors as well as about the action of neurosteroids in animal models of human diseases.  相似文献   

12.
Kerchner GA  Li P  Zhuo M 《IUBMB life》1999,48(3):251-256
Severe tissue or nerve injury can result in a chronic and inappropriate sensation of pain, mediated in part by the sensitization of spinal dorsal horn neurons to input from primary afferent fibers. Synaptic transmission at primary afferent synapses is mainly glutamatergic. Although a functioning excitatory synapse contains both alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the postsynaptic membrane, recent evidence suggests that dorsal horn neurons contain some "silent" synapses, which exhibit purely NMDA receptor-mediated evoked postsynaptic currents and do not conduct signals at resting membrane potential. Serotonin, which is released onto dorsal horn neurons by descending fibers from the rostroventral medulla, potentiates sensory transmission by activating silent synapses on those neurons, i.e., by recruiting functional AMPA receptors to the postsynaptic membrane. This phenomenon may contribute to the hyperexcitability of dorsal horn neurons seen in chronic pain conditions.  相似文献   

13.
Glutamate-releasing synapses are essential in fast neuronal signalling. Plasticity at these synapses is important for learning and memory as well as for the activity-dependent control of neuronal development. We have evaluated the trial-to-trial fluctuations of excitatory postsynaptic currents mediated by glutamate receptors of the AMPA and NMDA types in CA1 pyramidal cells. By using the whole cell patch clamp technique in brain slices from young rats, we have demonstrated that the relative variability of AMPA and NMDA receptor mediated responses, expressed as the coefficient of variation, is similar for these two types of responses [Brain Res. 800 (1998) 253-259]. The present paper summarizes and discusses these results in relation to current theories on hippocampal synaptic plasticity, especially with regard to the ideas of glutamate spillover and silent synapses. Our finding of a correspondence between AMPA and NMDA responses with respect to fluctuations is compatible with our previous finding of equal relative changes of the two during activity induced synaptic plasticity. However, the results argue against the glutamate spillover model according to which the effect of glutamate--and hence the induction of plasticity--may spread unspecifically between synapses. But how can silent synapses become functional if no spread of glutamate occurs and no initial signal is present to trigger the functionalization? Is it necessary that NMDA responses are present at these synapses, which are then silent merely with respect to AMPA receptors, or do other alternatives exist? Our discussion aims to elucidate these questions.  相似文献   

14.
Mobile NMDA receptors at hippocampal synapses   总被引:30,自引:0,他引:30  
Tovar KR  Westbrook GL 《Neuron》2002,34(2):255-264
Glutamate receptors are concentrated in the postsynaptic complex of central synapses. This implies a highly organized and stable postsynaptic membrane with tightly anchored receptors. Recent reports of rapid AMPA receptor insertion and removal at synapses have challenged this view. We examined the stability of synaptic NMDA receptors on cultured hippocampal neurons using the open-channel blockers (+)-MK-801 and ketamine to tag synaptic NMDA receptors. NMDA receptor-mediated EPSCs showed an anomalous recovery following "irreversible" MK-801 block. The recovery could not be attributed to MK-801 unbinding or insertion of new receptors, suggesting that membrane receptors had moved laterally into the synapse. At least 65% of synaptic NMDA receptors were mobile. Our results indicate that NMDA receptors can move laterally between synaptic and extrasynaptic pools, providing evidence for a dynamic organization of synaptic NMDA receptors in the postsynaptic complex.  相似文献   

15.
The actions of synaptically released zinc at hippocampal mossy fiber synapses   总被引:24,自引:0,他引:24  
Vogt K  Mellor J  Tong G  Nicoll R 《Neuron》2000,26(1):187-196
Zn2+ is present at high concentrations in the synaptic vesicles of hippocampal mossy fibers. We have used Zn2+ chelators and the mocha mutant mouse to address the physiological role of Zn2+ in this pathway. Zn2+ is not involved in the unique presynaptic plasticities observed at mossy fiber synapses but is coreleased with glutamate from these synapses, both spontaneously and with electrical stimulation, where it exerts a strong modulatory effect on the NMDA receptors. Zn2+ tonically occupies the high-affinity binding site of NMDA receptors at mossy fiber synapses, whereas the lower affinity voltage-dependent Zn2+ binding site is occupied during action potential driven-release. We conclude that Zn2+ is a modulatory neurotransmitter released from mossy fiber synapses and plays an important role in shaping the NMDA receptor response at these synapses.  相似文献   

16.
AMPA receptor trafficking at excitatory synapses   总被引:46,自引:0,他引:46  
Bredt DS  Nicoll RA 《Neuron》2003,40(2):361-379
Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.  相似文献   

17.
NMDA receptors are movin' in   总被引:5,自引:0,他引:5  
Dynamic modulation of the number of postsynaptic glutamate receptors is considered one of the main mechanisms for altering the strength of excitatory synapses in the central nervous system (CNS). However, until recently N-methyl-d-aspartate (NMDA) receptors were considered relatively stable once in the plasma membrane, especially in comparison with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors that are internalized at a high rate. A series of recent studies has changed this viewpoint by revealing that NMDA receptors are subject to constitutive as well as agonist-induced internalization through clathrin-mediated endocytosis. Surprisingly, agonist-induced internalization is not dependent on current flow through the NMDA channel, and the receptors are primed for this type of internalization by selective stimulation of the glycine site but not of the glutamate site. Endocytosis of NMDA receptors provides a fundamental mechanism for dynamic regulation of the number of NMDA receptors at synapses, which might be important for physiological and pathological functioning of the CNS.  相似文献   

18.
Coexistence of AMPA and NMDA receptors in glutamatergic synapses leads to a cooperative effect that can be very complex. This effect is dependent on many parameters including the relative and absolute number of the two types of receptors and biophysical parameters that can vary among synapses of the same cell. Herein we simulate the AMPA/NMDA cooperativity by using different number of the two types of receptors and considering the effect of the spine resistance on the EPSC production. Our results show that the relative number of NMDA with respect to AMPA produces a different degree of cooperation which depends also on the spine resistance.  相似文献   

19.
Kwon HB  Castillo PE 《Neuron》2008,57(1):108-120
The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP that is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this "classical" LTP, mf-CA3 synapses can undergo a form of LTP characterized by a selective enhancement of NMDA receptor-mediated transmission. This potentiation requires coactivation of NMDA and mGlu5 receptors and a postsynaptic calcium rise. Unlike classical LTP, expression of this mossy fiber LTP is due to a PKC-dependent recruitment of NMDA receptors specifically to the mf-CA3 synapse via a SNARE-dependent process. Having two mechanistically different forms of LTP may allow mf-CA3 synapses to respond with more flexibility to the changing demands of the hippocampal network.  相似文献   

20.
Long-term depression (LTD) reduces the functional strength of excitatory synapses through mechanisms that include the removal of AMPA glutamate receptors from the postsynaptic membrane. LTD induction is also known to result in structural changes at excitatory synapses, including the shrinkage of dendritic spines. Synaptic adhesion molecules are thought to contribute to the development, function and plasticity of neuronal synapses largely through their trans-synaptic adhesions. However, little is known about how synaptic adhesion molecules are altered during LTD. We report here that NGL-3 (netrin-G ligand-3), a postsynaptic adhesion molecule that trans-synaptically interacts with the LAR family of receptor tyrosine phosphatases and intracellularly with the postsynaptic scaffolding protein PSD-95, undergoes a proteolytic cleavage process. NGL-3 cleavage is induced by NMDA treatment in cultured neurons and low-frequency stimulation in brain slices and requires the activities of NMDA glutamate receptors, matrix metalloproteinases (MMPs) and presenilin/γ-secretase. These results suggest that NGL-3 is a novel substrate of MMPs and γ-secretase and that NGL-3 cleavage may regulate synaptic adhesion during LTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号