首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrinsically disordered proteins or, regions perform important biological functions through their dynamic conformations during binding. Thus accurate identification of these disordered regions have significant implications in proper annotation of function, induced fold prediction and drug design to combat critical diseases. We introduce DisPredict, a disorder predictor that employs a single support vector machine with RBF kernel and novel features for reliable characterization of protein structure. DisPredict yields effective performance. In addition to 10-fold cross validation, training and testing of DisPredict was conducted with independent test datasets. The results were consistent with both the training and test error minimal. The use of multiple data sources, makes the predictor generic. The datasets used in developing the model include disordered regions of various length which are categorized as short and long having different compositions, different types of disorder, ranging from fully to partially disordered regions as well as completely ordered regions. Through comparison with other state of the art approaches and case studies, DisPredict is found to be a useful tool with competitive performance. DisPredict is available at https://github.com/tamjidul/DisPredict_v1.0.  相似文献   

2.
MiRNAs play important roles in many diseases including cancers. However computational prediction of miRNA target genes is challenging and the accuracies of existing methods remain poor. We report mirMark, a new machine learning-based method of miRNA target prediction at the site and UTR levels. This method uses experimentally verified miRNA targets from miRecords and mirTarBase as training sets and considers over 700 features. By combining Correlation-based Feature Selection with a variety of statistical or machine learning methods for the site- and UTR-level classifiers, mirMark significantly improves the overall predictive performance compared to existing publicly available methods. MirMark is available from https://github.com/lanagarmire/MirMark.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0500-5) contains supplementary material, which is available to authorized users.  相似文献   

3.
Metabolomics and proteomics, like other omics domains, usually face a data mining challenge in providing an understandable output to advance in biomarker discovery and precision medicine. Often, statistical analysis is one of the most difficult challenges and it is critical in the subsequent biological interpretation of the results. Because of this, combined with the computational programming skills needed for this type of analysis, several bioinformatic tools aimed at simplifying metabolomics and proteomics data analysis have emerged. However, sometimes the analysis is still limited to a few hidebound statistical methods and to data sets with limited flexibility. POMAShiny is a web-based tool that provides a structured, flexible and user-friendly workflow for the visualization, exploration and statistical analysis of metabolomics and proteomics data. This tool integrates several statistical methods, some of them widely used in other types of omics, and it is based on the POMA R/Bioconductor package, which increases the reproducibility and flexibility of analyses outside the web environment. POMAShiny and POMA are both freely available at https://github.com/nutrimetabolomics/POMAShiny and https://github.com/nutrimetabolomics/POMA, respectively.  相似文献   

4.
Recurrent neural networks with memory and attention mechanisms are widely used in natural language processing because they can capture short and long term sequential information for diverse tasks. We propose an integrated deep learning model for microbial DNA sequence data, which exploits convolutional neural networks, recurrent neural networks, and attention mechanisms to predict taxonomic classifications and sample-associated attributes, such as the relationship between the microbiome and host phenotype, on the read/sequence level. In this paper, we develop this novel deep learning approach and evaluate its application to amplicon sequences. We apply our approach to short DNA reads and full sequences of 16S ribosomal RNA (rRNA) marker genes, which identify the heterogeneity of a microbial community sample. We demonstrate that our implementation of a novel attention-based deep network architecture, Read2Pheno, achieves read-level phenotypic prediction. Training Read2Pheno models will encode sequences (reads) into dense, meaningful representations: learned embedded vectors output from the intermediate layer of the network model, which can provide biological insight when visualized. The attention layer of Read2Pheno models can also automatically identify nucleotide regions in reads/sequences which are particularly informative for classification. As such, this novel approach can avoid pre/post-processing and manual interpretation required with conventional approaches to microbiome sequence classification. We further show, as proof-of-concept, that aggregating read-level information can robustly predict microbial community properties, host phenotype, and taxonomic classification, with performance at least comparable to conventional approaches. An implementation of the attention-based deep learning network is available at https://github.com/EESI/sequence_attention (a python package) and https://github.com/EESI/seq2att (a command line tool).  相似文献   

5.
ChIP-seq is a powerful method for obtaining genome-wide maps of protein-DNA interactions and epigenetic modifications. CHANCE (CHip-seq ANalytics and Confidence Estimation) is a standalone package for ChIP-seq quality control and protocol optimization. Our user-friendly graphical software quickly estimates the strength and quality of immunoprecipitations, identifies biases, compares the user''s data with ENCODE''s large collection of published datasets, performs multi-sample normalization, checks against quantitative PCR-validated control regions, and produces informative graphical reports. CHANCE is available at https://github.com/songlab/chance.  相似文献   

6.
When working on an ongoing genome sequencing and assembly project, it is rather inconvenient when gene identifiers change from one build of the assembly to the next. The gene labelling system described here, UniqTag, addresses this common challenge. UniqTag assigns a unique identifier to each gene that is a representative k-mer, a string of length k, selected from the sequence of that gene. Unlike serial numbers, these identifiers are stable between different assemblies and annotations of the same data without requiring that previous annotations be lifted over by sequence alignment. We assign UniqTag identifiers to ten builds of the Ensembl human genome spanning eight years to demonstrate this stability. The implementation of UniqTag in Ruby and an R package are available at https://github.com/sjackman/uniqtag sjackman/uniqtag. The R package is also available from CRAN: install.packages ("uniqtag"). Supplementary material and code to reproduce it is available at https://github.com/sjackman/uniqtag-paper.  相似文献   

7.
Significant improvements in genome sequencing and assembly technology have led to increasing numbers of high-quality genomes, revealing complex evolutionary scenarios such as multiple whole-genome duplication events, which hinders ancestral genome reconstruction via the currently available computational frameworks. Here, we present the Inferring Ancestor Genome Structure (IAGS) framework, a novel block/endpoint matching optimization strategy with single-cut-or-join distance, to allow ancestral genome reconstruction under both simple (single-copy ancestor) and complex (multicopy ancestor) scenarios. We evaluated IAGS with two simulated data sets and applied it to four different real evolutionary scenarios to demonstrate its performance and general applicability. IAGS is available at https://github.com/xjtu-omics/IAGS.  相似文献   

8.
Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data, as few methods can handle large datasets while maintaining alignment accuracy. We recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of sequences. In this paper, we present a comprehensive set of enhancements that allow MAGUS to align vastly larger datasets with greater speed. We compare MAGUS to other leading alignment methods on datasets of up to one million sequences. Our results demonstrate the advantages of MAGUS over other alignment software in both accuracy and speed. MAGUS is freely available in open-source form at https://github.com/vlasmirnov/MAGUS.  相似文献   

9.
Rapidly improving high-throughput sequencing technologies provide unprecedented opportunities for carrying out population-genomic studies with various organisms. To take full advantage of these methods, it is essential to correctly estimate allele and genotype frequencies, and here we present a maximum-likelihood method that accomplishes these tasks. The proposed method fully accounts for uncertainties resulting from sequencing errors and biparental chromosome sampling and yields essentially unbiased estimates with minimal sampling variances with moderately high depths of coverage regardless of a mating system and structure of the population. Moreover, we have developed statistical tests for examining the significance of polymorphisms and their genotypic deviations from Hardy–Weinberg equilibrium. We examine the performance of the proposed method by computer simulations and apply it to low-coverage human data generated by high-throughput sequencing. The results show that the proposed method improves our ability to carry out population-genomic analyses in important ways. The software package of the proposed method is freely available from https://github.com/Takahiro-Maruki/Package-GFE.  相似文献   

10.
Random Forest has become a standard data analysis tool in computational biology. However, extensions to existing implementations are often necessary to handle the complexity of biological datasets and their associated research questions. The growing size of these datasets requires high performance implementations. We describe CloudForest, a Random Forest package written in Go, which is particularly well suited for large, heterogeneous, genetic and biomedical datasets. CloudForest includes several extensions, such as dealing with unbalanced classes and missing values. Its flexible design enables users to easily implement additional extensions. CloudForest achieves fast running times by effective use of the CPU cache, optimizing for different classes of features and efficiently multi-threading. https://github.com/ilyalab/CloudForest.  相似文献   

11.
For many RNA molecules, the secondary structure is essential for the correct function of the RNA. Predicting RNA secondary structure from nucleotide sequences is a long-standing problem in genomics, but the prediction performance has reached a plateau over time. Traditional RNA secondary structure prediction algorithms are primarily based on thermodynamic models through free energy minimization, which imposes strong prior assumptions and is slow to run. Here, we propose a deep learning-based method, called UFold, for RNA secondary structure prediction, trained directly on annotated data and base-pairing rules. UFold proposes a novel image-like representation of RNA sequences, which can be efficiently processed by Fully Convolutional Networks (FCNs). We benchmark the performance of UFold on both within- and cross-family RNA datasets. It significantly outperforms previous methods on within-family datasets, while achieving a similar performance as the traditional methods when trained and tested on distinct RNA families. UFold is also able to predict pseudoknots accurately. Its prediction is fast with an inference time of about 160 ms per sequence up to 1500 bp in length. An online web server running UFold is available at https://ufold.ics.uci.edu. Code is available at https://github.com/uci-cbcl/UFold.  相似文献   

12.
Sequence alignment is a long standing problem in bioinformatics. The Basic Local Alignment Search Tool (BLAST) is one of the most popular and fundamental alignment tools. The explosive growth of biological sequences calls for speedup of sequence alignment tools such as BLAST. To this end, we develop high speed BLASTN (HS-BLASTN), a parallel and fast nucleotide database search tool that accelerates MegaBLAST—the default module of NCBI-BLASTN. HS-BLASTN builds a new lookup table using the FMD-index of the database and employs an accurate and effective seeding method to find short stretches of identities (called seeds) between the query and the database. HS-BLASTN produces the same alignment results as MegaBLAST and its computational speed is much faster than MegaBLAST. Specifically, our experiments conducted on a 12-core server show that HS-BLASTN can be 22 times faster than MegaBLAST and exhibits better parallel performance than MegaBLAST. HS-BLASTN is written in C++ and the related source code is available at https://github.com/chenying2016/queries under the GPLv3 license.  相似文献   

13.
14.
Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools–Lumpy, Delly and SoftSearch–and demonstrate Wham’s ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.
This is PLOS Computational Biology software paper.
  相似文献   

15.
Despite the growing number of immune repertoire sequencing studies, the field still lacks software for analysis and comprehension of this high-dimensional data. Here we report VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR) repertoires post-analysis tasks, provides a detailed tabular output and publication-ready graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unrelated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software and documentation are available at https://github.com/mikessh/vdjtools.  相似文献   

16.
We describe MetAMOS, an open source and modular metagenomic assembly and analysis pipeline. MetAMOS represents an important step towards fully automated metagenomic analysis, starting with next-generation sequencing reads and producing genomic scaffolds, open-reading frames and taxonomic or functional annotations. MetAMOS can aid in reducing assembly errors, commonly encountered when assembling metagenomic samples, and improves taxonomic assignment accuracy while also reducing computational cost. MetAMOS can be downloaded from: https://github.com/treangen/MetAMOS.  相似文献   

17.
18.
Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase prediction accuracy. Unfortunately, the same ML methods cannot readily be applied to RNA as they rely on large structural datasets only available for proteins. Here, we demonstrate how the available smaller data for RNA can be used to improve prediction of RNA contact maps. We introduce an algorithm called CoCoNet that is based on a combination of a Coevolutionary model and a shallow Convolutional Neural Network. Despite its simplicity and the small number of trained parameters, the method boosts the positive predictive value (PPV) of predicted contacts by about 70% with respect to DCA as tested by cross-validation of about eighty RNA structures. However, the direct inclusion of the CoCoNet contacts in 3D modeling tools does not result in a proportional increase of the 3D RNA structure prediction accuracy. Therefore, we suggest that the field develops, in addition to contact PPV, metrics which estimate the expected impact for 3D structure modeling tools better. CoCoNet is freely available and can be found at https://github.com/KIT-MBS/coconet.  相似文献   

19.
BackgroundRecord linkage integrates records across multiple related data sources identifying duplicates and accounting for possible errors. Real life applications require efficient algorithms to merge these voluminous data sources to find out all records belonging to same individuals. Our recently devised highly efficient record linkage algorithms provide best-known solutions to this challenging problem.MethodWe have developed RLT-S, a freely available web tool, which implements our single linkage clustering algorithm for record linkage. This tool requires input data sets and a small set of configuration settings about these files to work efficiently. RLT-S employs exact match clustering, blocking on a specified attribute and single linkage based hierarchical clustering among these blocks.ResultsRLT-S is an implementation package of our sequential record linkage algorithm. It outperforms previous best-known implementations by a large margin. The tool is at least two times faster for any dataset than the previous best-known tools.ConclusionsRLT-S tool implements our record linkage algorithm that outperforms previous best-known algorithms in this area. This website also contains necessary information such as instructions, submission history, feedback, publications and some other sections to facilitate the usage of the tool.AvailabilityRLT-S is integrated into http://www.rlatools.com, which is currently serving this tool only. The tool is freely available and can be used without login. All data files used in this paper have been stored in https://github.com/abdullah009/DataRLATools. For copies of the relevant programs please see https://github.com/abdullah009/RLATools.  相似文献   

20.
Community structure detection has proven to be important in revealing the underlying organisation of complex networks. While most current analyses focus on static networks, the detection of communities in dynamic data is both challenging and timely. An analysis and visualisation procedure for dynamic networks is presented here, which identifies communities and sub-communities that persist across multiple network snapshots. An existing method for community detection in dynamic networks is adapted, extended, and implemented. We demonstrate the applicability of this method to detect communities in networks where individuals tend not to change their community affiliation very frequently. When stability of communities cannot be assumed, we show that the sub-community model may be a better alternative. This is illustrated through test cases of social and biological networks. A plugin for Gephi, an open-source software program used for graph visualisation and manipulation, named “DyCoNet”, was created to execute the algorithm and is freely available from https://github.com/juliemkauffman/DyCoNet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号