首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed “brush borders,” which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this “intermicrovillar adhesion complex” remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10–MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.  相似文献   

2.
The recent explosion in genome sequencing has revealed the great diversity of the cadherin superfamily. Within the superfamily, protocadherins, which are expressed mainly in the nervous system, constitute the largest subgroup. Nevertheless, the structures of only the classical cadherins are known. Thus, to broaden our understanding of the adhesion repertoire of the cadherin superfamily, we determined the structure of the N-terminal first extracellular cadherin domain of the cadherin-related neuronal receptor/protocadherin-alpha4. The hydrophobic pocket essential for homophilic adhesiveness in the classical cadherins was not found, and the functional significance of this structural domain was supported by exchanging the first extracellular cadherin domains of protocadherin and classical cadherin. Moreover, potentially crucial variations were observed mainly in the loop regions. These included the protocadherin-specific disulfide-bonded Cys-X(5)-Cys motif, which showed Ca(2+)-induced chemical shifts, and the RGD motif, which has been suggested to be involved in heterophilic cell adhesion via the active form of beta1 integrin. Our findings reveal that the adhesion repertoire of the cadherin superfamily is far more divergent than would be predicted by studying the classical cadherins alone.  相似文献   

3.
《Biophysical journal》2022,121(6):1013-1028
Cadherins are a superfamily of adhesion proteins involved in a variety of biological processes that include the formation of intercellular contacts, the maintenance of tissue integrity, and the development of neuronal circuits. These transmembrane proteins are characterized by ectodomains composed of a variable number of extracellular cadherin (EC) repeats that are similar but not identical in sequence and fold. E-cadherin, along with desmoglein and desmocollin proteins, are three classical-type cadherins that have slightly curved ectodomains and engage in homophilic and heterophilic interactions through an exchange of conserved tryptophan residues in their N-terminal EC1 repeat. In contrast, clustered protocadherins are straighter than classical cadherins and interact through an antiparallel homophilic binding interface that involves overlapped EC1 to EC4 repeats. Here we present molecular dynamics simulations that model the adhesive domains of these cadherins using available crystal structures, with systems encompassing up to 2.8 million atoms. Simulations of complete classical cadherin ectodomain dimers predict a two-phased elastic response to force in which these complexes first softly unbend and then stiffen to unbind without unfolding. Simulated α, β, and γ clustered protocadherin homodimers lack a two-phased elastic response, are brittle and stiffer than classical cadherins and exhibit complex unbinding pathways that in some cases involve transient intermediates. We propose that these distinct mechanical responses are important for function, with classical cadherin ectodomains acting as molecular shock absorbers and with stiffer clustered protocadherin ectodomains facilitating overlap that favors binding specificity over mechanical resilience. Overall, our simulations provide insights into the molecular mechanics of single cadherin dimers relevant in the formation of cellular junctions essential for tissue function.  相似文献   

4.
The extracellular homophilic-binding domain of the cadherins consists of 5 cadherin repeats (EC1-EC5). Studies on cadherin specificity have implicated the NH(2)-terminal EC1 domain in the homophilic binding interaction, but the roles of the other extracellular cadherin (EC) domains have not been evaluated. We have undertaken a systematic analysis of the binding properties of the entire cadherin extracellular domain and the contributions of the other EC domains to homophilic binding. Lateral (cis) dimerization of the extracellular domain is thought to be required for adhesive function. Sedimentation analysis of the soluble extracellular segment of C-cadherin revealed that it exists in a monomer-dimer equilibrium with an affinity constant of approximately 64 microm. No higher order oligomers were detected, indicating that homophilic binding between cis-dimers is of significantly lower affinity. The homophilic binding properties of a series of deletion constructs, lacking successive or individual EC domains fused at the COOH terminus to an Fc domain, were analyzed using a bead aggregation assay and a cell attachment-based adhesion assay. A protein with only the first two NH(2)-terminal EC domains (CEC1-2Fc) exhibited very low activity compared with the entire extracellular domain (CEC1-5Fc), demonstrating that EC1 alone is not sufficient for effective homophilic binding. CEC1-3Fc exhibited high activity, but not as much as CEC1-4Fc or CEC1-5Fc. EC3 is not required for homophilic binding, however, since CEC1-2-4Fc and CEC1-2-4-5Fc exhibited high activity in both assays. These and experiments using additional EC combinations show that many, if not all, the EC domains contribute to the formation of the cadherin homophilic bond, and specific one-to-one interaction between particular EC domains may not be required. These conclusions are consistent with a previous study on direct molecular force measurements between cadherin ectodomains demonstrating multiple adhesive interactions (Sivasankar, S., W. Brieher, N. Lavrik, B. Gumbiner, and D. Leckband. 1999. PROC: Natl. Acad. Sci. USA. 96:11820-11824; Sivasankar, S., B. Gumbiner, and D. Leckband. 2001. Biophys J. 80:1758-68). We propose new models for how the cadherin extracellular repeats may contribute to adhesive specificity and function.  相似文献   

5.
Cadherins are a large family of single-pass transmembrane proteins principally involved in Ca2+-dependent homotypic cell adhesion. The cadherin molecules comprise three domains, the intracellular domain, the transmembrane domain and the extracellular domain, and form large complexes with a vast array of binding partners (including cadherin molecules of the same type in homophilic interactions and cellular protein catenins), orchestrating biologically essential extracellular and intracellular signalling processes. While current, contrasting models for classic cadherin homophilic interaction involve varying numbers of specific repeats found in the extracellular domain, the structure of the domain itself clearly remains the main determinant of cell stability and binding specificity. Through intracellular interactions, cadherin enhances its adhesive properties binding the cytoskeleton via cytoplasmic associated factors alpha- catenin, beta-catenin and p120ctn. Recent structural studies on classic cadherins and these catenin molecules have provided new insight into the essential mechanisms underlying cadherin-mediated cell interaction and catenin-mediated cellular signalling. Remarkable structural diversity has been observed in beta-catenin recognition of other cellular factors including APC, Tcf and ICAT, proteins that contribute to or compete with cadherin/catenin functioning.  相似文献   

6.
A large number of cadherins and cadherin-related proteins are expressed in different tissues of a variety of multicellular organisms. These proteins share one property: their extracellular domains consist of multiple repeats of a cadherin-specific motif. A recent structure study has shown that the cadherin repeats roughly corresponding to the folding unit of the extracellular domains. The members of the cadherin superfamily are roughly classified into two groups, classical type cadherins proteins and protocadherin type according to their structural properties. These proteins appear to be derived from a common ancestor that might have cadherin repeats similar to those of the current protocadherins, and to have common functional properties. Among various cadherins, E-cadherin was the first to be identified as a Ca2+-dependent homophilic adhesion protein. Recent knockout mice experiments have proven its biological role, but there are still several puzzling unsolved properties of the cell adhesion activity. Other members of cadherin superfamily show divergent properties and many lack some of the expected properties of cell adhesion protein. Since recent studies of various adhesion proteins reveal that they are involved in different signal transduction pathways, the idea that the new members of cadherin superfamily may participate in more general cell-cell interaction processes including signal transduction is an intriguing hypothesis. The cadherin superfamily is structurally divergent and possibly functionally divergent as well. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily with five extracellular immunoglobulin-like domains, facilitates heterophilic (ALCAM-CD6) and homophilic (ALCAM-ALCAM) cell-cell interactions. While expressed in a wide variety of tissues and cells, ALCAM is restricted to subsets of cells usually involved in dynamic growth and/or migration processes. A structure-function analysis, using two monoclonal anti-ALCAM antibodies and a series of amino-terminally deleted ALCAM constructs, revealed that homophilic cell adhesion depended on ligand binding mediated by the membrane-distal amino-terminal immunoglobulin domain and on avidity controlled by ALCAM clustering at the cell surface involving membrane-proximal immunoglobulin domains. Co-expression of a transmembrane ALCAM deletion mutant, which lacks the ligand binding domain, and endogenous wild-type ALCAM inhibited homophilic cell-cell interactions by interference with ALCAM avidity, while homophilic, soluble ligand binding remained unaltered. The extracellular structures of ALCAM thus provide two structurally and functionally distinguishable modules, one involved in ligand binding and the other in avidity. Functionality of both modules is required for stable homophilic ALCAM-ALCAM cell-cell adhesion.  相似文献   

8.
Mutations in the gene for neural cell adhesion molecule L1 (L1CAM) result in a debilitating X-linked congenital disorder of brain development. At the neuronal cell surface L1 may interact with a variety of different molecules including itself and two other CAMs of the immunoglobulin superfamily, axonin-1 and F11. However, whether all of these interactions are relevant to normal or abnormal development has not been determined. Over one-third of patient mutations are single amino acid changes distributed across 10 extracellular L1 domains. We have studied the effects of 12 missense mutations on binding to L1, axonin-1 and F11 and shown for the first time that whereas many mutations affect all three interactions, others affect homophilic or heterophilic binding alone. Patient pathology is therefore due to different types of L1 malfunction. The nature and functional consequence of mutation is also reflected in the severity of the resultant phenotype with structural mutations likely to affect more than one binding activity and result in early mortality. Moreover, the data indicate that several extracellular domains of L1 are required for homophilic and heterophilic interactions.  相似文献   

9.
Classical cadherins mediate cell-cell adhesion through calcium-dependent homophilic interactions and are activated through cleavage of a prosequence in the late Golgi. We present here the first three-dimensional structure of a classical cadherin prosequence, solved by NMR. The prototypic prosequence of N-cadherin consists of an Ig-like domain and an unstructured C-terminal region. The folded part of the prosequence-termed prodomain-has a striking structural resemblance to cadherin "adhesive" domains that could not have been predicted from the amino acid sequence due to low sequence similarities. Our detailed structural and evolutionary analysis revealed that prodomains are distant relatives of cadherin "adhesive" domains but lack all the features known to be important for cadherin-cadherin interactions. The presence of an additional "nonadhesive" domain seems to make it impossible to engage homophilic interactions between cadherins that are necessary to activate adhesion, thus explaining the inactive state of prodomain-bearing cadherins.  相似文献   

10.
Desmosomes and adherens junctions are cadherin-based protein complexes responsible for cell-cell adhesion of epithelial cells. Type 1 cadherins of adherens junctions show specific homophilic adhesion that plays a major role in developmental tissue segregation. The desmosomal cadherins, desmocollin and desmoglein, occur as several different isoforms with overlapping expression in some tissues where different isoforms are located in the same desmosomes. Although adhesive binding of desmosomal cadherins has been investigated in a variety of ways, their interaction in desmosome-forming epithelial cells has not been studied. Here, using extracellular homobifunctional cross-linking, we provide evidence for homophilic and isoform-specific binding between the Dsc2, Dsc3, Dsg2, and Dsg3 isoforms in HaCaT keratinocytes and show that it represents trans interaction. Furthermore, the cross-linked adducts are present in the detergent-insoluble fraction, and electron microscopy shows that extracellular cross-linking probably occurs in desmosomes. We found no evidence for either heterophilic or cis interaction, but neither can be completely excluded by our data. Mutation of amino acid residues Trp-2 and Ala-80 that are important for trans interaction in classical cadherin adhesive binding abolished Dsc2 binding, indicating that these residues are also involved in desmosomal adhesion. These interactions of desmosomal cadherins may be of key importance for their ordered arrangement within desmosomes that we believe is essential for desmosomal adhesive strength and the maintenance of tissue integrity.  相似文献   

11.
Phylogenetic analysis of the cadherin superfamily.   总被引:4,自引:0,他引:4  
Cadherins are a multigene family of proteins which mediate homophilic calcium-dependent cell adhesion and are thought to play an important role in morphogenesis by mediating specific intercellular adhesion. Different lines of experimental evidence have recently indicated that the site responsible for mediating adhesive interactions is localized to the first extracellular domain of cadherin. Based upon an analysis of the sequence of this domain, I show that cadherins can be classified into three groups with distinct structural features. Furthermore, using this sequence information a phylogenetic tree relating the known cadherins was assembled. This is the first such tree to be published for the cadherins. One cadherin subtype, neural cadherin (N-cadherin), shows very little sequence divergence between species, whereas all other cadherin subtypes show more substantial divergence, suggesting that selective pressure upon this domain may be greater for N-cadherin than for other cadherins. Phylogenetic analysis also suggests that the gene duplications which established the main branches leading to the different cadherin subtypes occurred very early in their history. These duplications set the stage for the diversified superfamily we now observe.  相似文献   

12.
The cadherin family is classified into classical cadherins, desmosomal cadherins and protocadherins (PCDHs). Genomic structures distinguish between PCDHs and other cadherins, and between clustered and non-clustered PCDHs. The phylogenetic analysis with full sequences of non-clustered PCDHs enabled them to be further classified into three subgroups: δ1 (PCDH1, PCDH7, PCDH9, PCDH11 and PCDH20), δ2 (PCDH8, PCDH10, PCDH12, PCDH17, PCDH18 and PCDH19) and ε (PCDH15, PCDH16, PCDH21 and MUCDHL). ε-PCDH members except PCDH21 have either higher or lower numbers of cadherin repeats than those of other PCDHs. Non-clustered PCDHs are expressed predominantly in the nervous system and have spatiotemporally diverse expression patterns. Especially, the region-specific expressions of non-clustered PCDHs have been observed in cortical area of early postnatal stage and in caudate putaman and/or hippocampal formation of mature brains, suggesting that non-clustered PCDHs play roles in the circuit formation and maintenance. The non-clustered PCDHs appear to have homophilic/heterophilic cell-cell adhesion properties, and each member has diverse cell signaling partnership distinct from those of other members (PCDH7/TAF1; PCDH8/TAO2δ; PCDH10/Nap1; PCDH11/δ-catenin; PCDH18/mDab1). Furthermore, each PCDH has several isoforms with differential cytoplasmic sequences, suggesting that one PCDH isoform could activate intracellular signaling differential from other isoforms. These facts suggest that non-clustered PCDHs play roles as a mediator of a regulator of other molecules as well as cell-cell adhesion. Furthermore, some non-clustered PCDHs have been considered to be involved in neuronal diseases such as autism-spectrum disorders, schizophrenia and female-limited epilepsy and cognitive impairment, suggesting that they play multiple, tightly regulated roles in normal brain function. In addition, some non-clustered PCDHs have been suggested as candidate tumor suppressor genes in several tissues. Although molecular adhesive and regulatory properties of some PCDHs began to be unveiled, the endeavor to understand the molecular mechanism of non-clustered PCDH is still in its infancy and requires future study.Key words: non-clustered protocadherins, gene structure, cell adhesion, intracellular signaling, neural disease, cancer  相似文献   

13.
Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a member of the immunoglobulin superfamily and belongs to a recent subgroup with five extracellular immunoglobulin-like domains (VVC2C2C2). ALCAM mediates both heterophilic (ALCAM-CD6) and homophilic (ALCAM-ALCAM) cell-cell interactions. While expressed in a wide variety of tissues, ALCAM is usually restricted to subsets of cells involved in dynamic growth and/or migration, including neural development, branching organ development, hematopoiesis, immune response and tumor progression. Recent structure-function analyses of ALCAM hint at how its cytoskeletal anchoring and the integrity of the extracellular immunoglobulin-like domains may regulate complex cellular properties in regard to cell adhesion, growth and migration. Accumulating evidence suggests that ALCAM expression may reflect the onset of a cellular program for homeostatic control of growth saturation, which induces either growth arrest or cell migration when the upper limits are exceeded.  相似文献   

14.
The classical cadherins, definitive proteins of the cadherin superfamily, are characterized functionally by their ability to mediate calcium-dependent cell aggregation in vitro. To test hypothetical mechanisms of adhesion, we have constructed two mutants of the chicken E-cadherin protein, one with the highly conserved His-Ala-Val (HAV) sequence motif reversed to Val-Ala-His (VAH), the other lacking the first extracellular domain (EC1). The inversion of HAV to VAH has no effect on the capacity of E-cadherin to mediate adhesion. Deletion of EC1 completely eliminates the ability of E-cadherin to mediate homophilic adhesion, but the deletion mutant is capable of adhering heterophilically to both unmutated E-cadherin and to the HAV/VAH mutant. These results demonstrate that the conserved HAV sequence motif is not involved in cadherin-mediated adhesion as has been suggested previously and supports the idea that in the context of the cell surface, cadherin-mediated cell-cell adhesion involves an interaction of EC1 with other domains of the cadherin extracellular moiety and not the "linear zipper" model, which posits trans interactions only between EC1 on apposing cell surfaces.  相似文献   

15.
Regulation of cadherin-mediated adhesion can occur rapidly at the cell surface. To understand the mechanism underlying cadherin regulation, it is essential to elucidate the homophilic binding mechanism that underlies all cadherin-mediated functions. Therefore, we have investigated the structural and functional properties of the extracellular segment of Xenopus C-cadherin using a purified, recombinant protein (CEC 1-5). CEC 1-5 supported adhesion of CHO cells expressing C-cadherin. The extracellular segment was also capable of mediating aggregation of microspheres. Chemical cross-linking and gel filtration revealed that CEC 1-5 formed dimers in the presence as well as absence of calcium. Analysis of the functional activity of purified dimers and monomers demonstrated that dimers retained substantially greater homophilic binding activity than monomers. These results demonstrate that lateral dimerization is necessary for homophilic binding between cadherin extracellular segments and suggest multiple potential mechanisms for the regulation of cadherin activity. Since the extracellular segment alone possessed significant homophilic binding activity, the adhesive activity of the extracellular segment in a cellular context was analyzed. The adhesion of CHO cells expressing a truncated version of C-cadherin lacking the cytoplasmic tail was compared to cells expressing the wild-type C-cadherin using a laminar flow assay on substrates coated with CEC 1-5. CHO cells expressing the truncated C-cadherin were able to attach to CEC 1-5 and to resist detachment by low shear forces, demonstrating that tailless C-cadherin can mediate basic, weak adhesion of CHO cells. However, cells expressing the truncated C-cadherin did not exhibit the complete adhesive activity of cells expressing wild-type C-cadherin. Cells expressing wild-type C-cadherin remained attached to CEC 1-5 at high shear forces, while cells expressing the tailless C-cadherin did not adhere well at high shear forces. These results suggest that there may be two states of cadherin-mediated adhesion. The first, relatively weak state can be mediated through interactions between the extracellular segments alone. The second strong adhesive state is critically dependent on the cytoplasmic tail.  相似文献   

16.
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily proteins that participate in the organization of epithelial and endothelial junctions. Nectins have three Ig-like domains in the extracellular region, and the first one is essential in cell-cell adhesion and plays a central role in the interaction with the envelope glycoprotein D of several viruses. Five Nectin-like molecules (Necl-1 through -5) with similar domain structures to those of Nectins have been identified. Necl-1 is specifically expressed in neural tissue, has Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity, and plays an important role in the formation of synapses, axon bundles, and myelinated axons. Here we report the first crystal structure of its N-terminal Ig-like V domain at 2.4 A, providing insight into trans-cellular recognition mediated by Necl-1. The protein crystallized as a dimer, and the dimeric form was confirmed by size-exclusion chromatography and chemical cross-linking experiments, indicating this V domain is sufficient for homophilic interaction. Mutagenesis work demonstrated that Phe(82) is a key residue for the adhesion activity of Necl-1. A model for homophilic adhesion of Necl-1 at synapses is proposed based on its structure and previous studies.  相似文献   

17.
Protocadherins are a group of transmembrane proteins with homophilic binding activity, members of the cadherin superfamily. Apart from their role in adhesion, the cellular functions of protocadherins are essentially unknown. Protocadherin (PCDH)12 was previously identified in invasive trophoblasts and endothelial and mesangial cells in the mouse. Invalidation studies revealed that the protein was required for optimal placental development. In this article, we show that its human homolog is abundantly expressed in various trophoblast subtypes of the human placenta and at lower levels in endothelial cells. We demonstrate that PCDH12 is shed at high rates in vitro. The shedding mechanism depends on ADAM10 and results in reduced cellular adhesion in a cell migration assay. PCDH12 is subsequently cleaved by the γ-secretase complex, and its cytoplasmic domain is rapidly degraded by the proteasome. PCDH12 shedding is regulated by interlinked intracellular pathways, including those involving protein kinase C, PI3K, and cAMP, that either increase or inhibit cleavage. In endothelial cells, VEGF, prostaglandin E(2), or histamine regulates PCDH12 shedding. The extracellular domain of PCDH12 was also detected in human serum and urine, thus providing evidence of PCDH12 shedding in vivo. Importantly, we observed an increase in circulating PCDH12 in pregnant women who later developed a pre-eclampsia, a frequent pregnancy syndrome and a major cause of maternal and fetal morbidity and mortality. In conclusion, we speculate that, like in mice, PCDH12 may play an important role in human placental development and that proteolytic cleavage in response to external factors, such as cytokines and pathological settings, regulates its activity.  相似文献   

18.
Wolverton T  Lalande M 《Genomics》2001,76(1-3):66-72
Protocadherins are members of a nonclassic subfamily of calcium-dependent cell-cell adhesion molecules in the cadherin superfamily. Although the extracellular domains have several common structural features, there is no extensive homology between the cytoplasmic domains of protocadherin subfamily members. We have identified a new subclass of protocadherins based on a shared and highly conserved 17-amino-acid cytoplasmic motif. The subclass currently consists of 18 protocadherin members. Two of these, PCDH18 and PCDH19, are novel protocadherins and a third is the human orthologue of mouse Pcdh10. All three genes encode six ectodomain repeats with cadherin-like attributes and, consistent with the structural characteristics of protocadherins, a large first exon encodes the extracellular domain of each gene.  相似文献   

19.
The structures of many cell surface adhesion proteins comprise multiple tandem repeats of structurally similar domains. In many cases, the functional significance of this architecture is unknown, and there are several cases in which evidence for individual domain involvement in adhesion has been contradictory. In particular, the extracellular region of the adhesion glycoprotein cadherin consists of five tandemly arranged domains. One proposed mechanism postulated that adhesion involves only trans interactions between the outermost domains. However, subsequent investigations have generated several competing models. Here we describe direct measurements of the distance-dependent interaction potentials between cadherin mutants lacking different domains. By quantifying both the absolute distances at which opposed cadherin fragments bind and the quantized changes in the interaction potentials that result from deletions of individual domains, we demonstrate that two domains participate in homophilic cadherin binding. This finding contrasts with the current view that cadherins bind via a single, unique site on the protein surface. The potentials that result from interactions involving multiple domains generate a novel, modular binding mechanism in which opposed cadherin ectodomains can adhere in any of three antiparallel alignments.  相似文献   

20.
Cell adhesion mediated by type I cadherins involves homophilic "trans" interactions that are thought to be brought about by a strand exchange mechanism involving the N-terminal extracellular domain. Here, we present the high-resolution crystal structure of the N-terminal two domains of human E-cadherin. Comparison of this structure with other type I cadherin structures reveals features that are likely to be critical to facilitate dimerization by strand exchange as well as dimer flexibility. We integrate this structural knowledge to provide a model for type I cadherin adhesive interactions. Intra-molecular docking of the conserved N-terminal "adhesion arm" into the acceptor pocket in monomeric E-cadherin appears largely identical to inter-molecular docking of the adhesion arm in adhesive trans dimers. A strained conformation of the adhesion arm in the monomer, however, may create an equilibrium between "open" and "closed" forms that primes the cadherin for formation of adhesive interactions, which are then stabilized by additional dimer-specific contacts. By contrast, in type II cadherins, strain in the adhesion arm appears absent and a much larger surface area is involved in trans adhesion, which may compensate the activation energy required to peel off the intra-molecularly docked arm. It seems that evolution has selected slightly different adhesion mechanisms for type I and type II cadherins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号