首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza virus defective interfering (DI) particles are naturally occurring noninfectious virions typically generated during in vitro serial passages in cell culture of the virus at a high multiplicity of infection. DI particles are recognized for the role they play in inhibiting viral replication and for the impact they have on the production of infectious virions. To date, influenza virus DI particles have been reported primarily as a phenomenon of cell culture and in experimentally infected embryonated chicken eggs. They have also been isolated from a respiratory infection of chickens. Using a sequencing approach, we characterize several subgenomic viral RNAs from human nasopharyngeal specimens infected with the influenza A(H1N1)pdm09 virus. The distribution of these in vivo-derived DI-like RNAs was similar to that of in vitro DIs, with the majority of the defective RNAs generated from the PB2 (segment 1) of the polymerase complex, followed by PB1 and PA. The lengths of the in vivo-derived DI-like segments also are similar to those of known in vitro DIs, and the in vivo-derived DI-like segments share internal deletions of the same segments. The presence of identical DI-like RNAs in patients linked by direct contact is compatible with transmission between them. The functional role of DI-like RNAs in natural infections remains to be established.  相似文献   

2.
The epidemiological success of pandemic and epidemic influenza A viruses relies on the ability to transmit efficiently from person-to-person via respiratory droplets. Respiratory droplet (RD) transmission of influenza viruses requires efficient replication and release of infectious influenza particles into the air. The 2009 pandemic H1N1 (pH1N1) virus originated by reassortment of a North American triple reassortant swine (TRS) virus with a Eurasian swine virus that contributed the neuraminidase (NA) and M gene segments. Both the TRS and Eurasian swine viruses caused sporadic infections in humans, but failed to spread from person-to-person, unlike the pH1N1 virus. We evaluated the pH1N1 and its precursor viruses in a ferret model to determine the contribution of different viral gene segments on the release of influenza virus particles into the air and on the transmissibility of the pH1N1 virus. We found that the Eurasian-origin gene segments contributed to efficient RD transmission of the pH1N1 virus likely by modulating the release of influenza viral RNA-containing particles into the air. All viruses replicated well in the upper respiratory tract of infected ferrets, suggesting that factors other than viral replication are important for the release of influenza virus particles and transmission. Our studies demonstrate that the release of influenza viral RNA-containing particles into the air correlates with increased NA activity. Additionally, the pleomorphic phenotype of the pH1N1 virus is dependent upon the Eurasian-origin gene segments, suggesting a link between transmission and virus morphology. We have demonstrated that the viruses are released into exhaled air to varying degrees and a constellation of genes influences the transmissibility of the pH1N1 virus.  相似文献   

3.
The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles.  相似文献   

4.
The genomic viral RNA (vRNA) segments of influenza A virus contain specific packaging signals at their termini that overlap the coding regions. To further characterize cis-acting signals in segment 7, we introduced synonymous mutations into the terminal coding regions. Mutation of codons that are normally highly conserved reduced virus growth in embryonated eggs and MDCK cells between 10- and 1,000-fold compared to that of the wild-type virus, whereas similar alterations to nonconserved codons had little effect. In all cases, the growth-impaired viruses showed defects in virion assembly and genome packaging. In eggs, nearly normal numbers of virus particles that in aggregate contained apparently equimolar quantities of the eight segments were formed, but with about fourfold less overall vRNA content than wild-type virions, suggesting that, on average, fewer than eight segments per particle were packaged. Concomitantly, the particle/PFU and segment/PFU ratios of the mutant viruses showed relative increases of up to 300-fold, with the behavior of the most defective viruses approaching that predicted for random segment packaging. Fluorescent staining of infected cells for the nucleoprotein and specific vRNAs confirmed that most mutant virus particles did not contain a full genome complement. The specific infectivity of the mutant viruses produced by MDCK cells was also reduced, but in this system, the mutations also dramatically reduced virion production. Overall, we conclude that segment 7 plays a key role in the influenza A virus genome packaging process, since mutation of as few as 4 nucleotides can dramatically inhibit infectious virus production through disruption of vRNA packaging.  相似文献   

5.
To determine the relationship between influenza A virus replication and innate antiviral immune responses, rhesus monkeys were given oseltamivir before influenza A/Memphis/7/01 (H1N1) challenge. We found that oseltamivir treatment significantly reduced viral replication in the trachea (p < 0.029). Further, in the trachea of both treated and untreated monkeys the mRNA levels of most innate antiviral molecules in the IFN-alphabeta pathway were dramatically increased by 24 h postinfection. However, the mRNA level of a single IFN-stimulated gene, MxA (myxovirus resistance A), the IFN-stimulated gene known to be critical in blocking influenza virus replication, was significantly lower in the tracheal lavages of untreated monkeys than in the oseltamivir-treated monkeys (p = 0.05). These results demonstrate for the first time that uncontrolled influenza A virus replication actively suppresses MxA gene expression and emphasize the critical role of innate immunity in controlling influenza virus replication in vivo.  相似文献   

6.
7.
A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection.  相似文献   

8.
9.
An avian influenza A virus, A/Mallard/NY/6750/78(H2N2), was restricted in in replication in the respiratory tract of squirrel monkeys. Avian-human influenza A reassortant viruses possessing the six RNA segments coding for nonsurface proteins (i.e., internal genes) of this avian virus were as restricted in replication in squirrel monkeys as their avian influenza parent. These findings indicated that restriction of replication of the avian influenza virus is a function of one or more of its internal genes. For an investigation of which of the avian influenza genes was responsible for restricted replication in the respiratory tract of primates, reassortant viruses were produced that contained human influenza virus surface antigens from the A/Udorn/72(H3N2) virus and one or more of the internal genes derived from the avian influenza virus parent. Avian-human reassortant influenza A viruses containing only the nucleoprotein or matrix protein RNA segment from the avian influenza virus parent were as restricted in their growth as an avian-human influenza reassortant virus containing each of the six avian influenza internal genes. In addition, an avian-human influenza reassortant virus possessing only the avian RNA 1 and nonstructural genes (which by themselves do not specify restricted replication) manifested a significant reduction of virus replication in squirrel monkey tracheas. Thus, the avian nucleoprotein and matrix genes appear to play a major role in the host range restriction exhibited by the A/Mallard/78 virus and its reassortants, but the combination of RNA 1 and nonstructural genes also contributes to restriction of replication.  相似文献   

10.

Defective interfering particles (DIPs) lack an essential portion of the virus genome, but retain signals for replication and packaging, and therefore, interfere with standard virus (STV) replication. Due to this property, DIPs can be potential antivirals. The influenza A virus DIP DI244, generated during propagation in chicken eggs, has been previously described as a potential candidate for influenza antiviral therapy. As a cell culture-based manufacturing process would be more suitable to fulfill large-scale production needs of an antiviral and enables full process control in closed systems, we investigated options to produce DI244 in the avian cell line AGE1.CR.pIX in chemically defined suspension culture. With a DI244 fraction of 55.8% compared to STV, the highest DI244 yield obtained from 50 million cells was 4.6 × 109 vRNA copies/mL at 12 h post infection. However, other defective genomes were also detected. Since these additionally produced defective particles are non-infectious, they might be still useful in antiviral therapies. In case they would interfere with quality of the final product, we examined the impact of virus seeds and selected process parameters on DI244 yield and contamination level with other defective particles. With a DI244 fraction of 5.5%, the yield obtained was 1.7 × 108 vRNA copies/mL but now without additional defective genomes. Although the DI244 yield might be decreased in this case, such controlled manufacturing conditions are not available in chicken eggs. Overall, the application of these findings can support design and optimization of a cell culture-based production process for DIPs to be used as antivirals.

  相似文献   

11.
The segmented negative-sense RNA genome of influenza A virus is assembled into ribonucleoprotein complexes (RNP) with viral RNA-dependent RNA polymerase and nucleoprotein (NP). It is in the context of these RNPs that the polymerase transcribes and replicates viral RNA (vRNA). Host acidic nuclear phosphoprotein 32 (ANP32) family proteins play an essential role in vRNA replication by mediating the dimerization of the viral polymerase via their N-terminal leucine-rich repeat (LRR) domain. However, whether the C-terminal low-complexity acidic region (LCAR) plays a role in RNA synthesis remains unknown. Here, we report that the LCAR is required for viral genome replication during infection. Specifically, we show that the LCAR directly interacts with NP and this interaction is mutually exclusive with RNA. Furthermore, we show that the replication of a short vRNA-like template that can be replicated in the absence of NP is less sensitive to LCAR truncations compared with the replication of full-length vRNA segments which is NP-dependent. We propose a model in which the LCAR interacts with NP to promote NP recruitment to nascent RNA during influenza virus replication, ensuring the co-replicative assembly of RNA into RNPs.  相似文献   

12.
Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus pandemic. In both the avian influenza A(H5N1) and the recently emerging avian influenza A(H7N9) viruses, the polymerase basic 2 protein (PB2) E627K mutation appears to be of key importance for human adaptation. During a large influenza A(H7N7) virus outbreak in the Netherlands in 2003, the A(H7N7) virus isolated from a fatal human case contained the PB2 E627K mutation as well as a hemagglutinin (HA) K416R mutation. In this study, we aimed to investigate whether these mutations occurred in the avian or the human host by Illumina Ultra-Deep sequencing of three previously uninvestigated clinical samples obtained from the fatal case. In addition, we investigated three chicken samples, two of which were obtained from the source farm. Results showed that the PB2 E627K mutation was not present in any of the chicken samples tested. Surprisingly, the avian samples were characterized by the presence of influenza virus defective RNA segments, suggestive for the synthesis of defective interfering viruses during infection in poultry. In the human samples, the PB2 E627K mutation was identified with increasing frequency during infection. Our results strongly suggest that human adaptation marker PB2 E627K has emerged during virus infection of a single human host, emphasizing the importance of reducing human exposure to avian influenza viruses to reduce the likelihood of viral adaptation to humans.  相似文献   

13.
14.
The A/Chicken/Pennsylvania/1/83 influenza virus, isolated from a respiratory infection of chickens, is an avirulent H5N2 virus containing subgenomic RNAs (W.J. Bean, Y. Kawaoka, J.M. Wood, J.E. Pearson, and R.G. Webster, J. Virol. 54:151-160, 1985). We show here that defective interfering particles are present in this virus population. The virus had a low ratio of plaque-forming to hemagglutinating units and produced interference with standard virus multiplication in infectious center reduction assays. Subgenomic RNAs were identified as internally deleted polymerase RNAs. We have confirmed that this virus protects chickens from lethal H5N2 influenza virus infection. This protective effect appeared to be due to the inhibition of virulent virus multiplication. Additionally, subgenomic RNAs derived from polymerase RNAs were detected in 5 of 18 RNA preparations from animal influenza virus isolates. Therefore, defective interfering particles are sometimes produced in natural influenza virus infections, not just under laboratory conditions. These particles may be capable of suppressing the pathogenic effect of virulent virus infections in nature.  相似文献   

15.
Another influenza pandemic is inevitable, and new measures to combat this and seasonal influenza are urgently needed. Here we describe a new concept in antivirals based on a defined, naturally occurring defective influenza virus RNA that has the potential to protect against any influenza A virus in any animal host. This “protecting RNA” (244 RNA) is incorporated into virions which, although noninfectious, deliver the RNA to those cells of the respiratory tract that are naturally targeted by infectious influenza virus. A 120-ng intranasal dose of this 244 protecting virus completely protected mice against a simultaneous challenge of 10 50% lethal doses with influenza A/WSN (H1N1) virus. The 244 virus also protected mice against strong challenge doses of all other subtypes tested (i.e., H2N2, H3N2, and H3N8). This prophylactic activity was maintained in the animal for at least 1 week prior to challenge. The 244 virus was 10- to 100-fold more active than previously characterized defective influenza A viruses, and the protecting activity was confirmed to reside in the 244 RNA molecule by recovering a protecting virus entirely from cloned cDNA. There was a clear therapeutic benefit when the 244 virus was administered 24 to 48 h after a lethal challenge, an effect which has not been previously observed with any defective virus. Protecting virus reduced, but did not abolish, replication of challenge virus in mouse lungs during both prophylactic and therapeutic treatments. Protecting virus is a novel antiviral, having the potential to combat human influenza virus infections, particularly when the infecting strain is not known or is resistant to antiviral drugs.  相似文献   

16.
A high particle to infectivity ratio is a feature common to many RNA viruses, with ~90–99% of particles unable to initiate a productive infection under low multiplicity conditions. A recent publication by Brooke et al. revealed that, for influenza A virus (IAV), a proportion of these seemingly non-infectious particles are in fact semi-infectious. Semi-infectious (SI) particles deliver an incomplete set of viral genes to the cell, and therefore cannot support a full cycle of replication unless complemented through co-infection. In addition to SI particles, IAV populations often contain defective-interfering (DI) particles, which actively interfere with production of infectious progeny. With the aim of understanding the significance to viral evolution of these incomplete particles, we tested the hypothesis that SI and DI particles promote diversification through reassortment. Our approach combined computational simulations with experimental determination of infection, co-infection and reassortment levels following co-inoculation of cultured cells with two distinct influenza A/Panama/2007/99 (H3N2)-based viruses. Computational results predicted enhanced reassortment at a given % infection or multiplicity of infection with increasing semi-infectious particle content. Comparison of experimental data to the model indicated that the likelihood that a given segment is missing varies among the segments and that most particles fail to deliver ≥1 segment. To verify the prediction that SI particles augment reassortment, we performed co-infections using viruses exposed to low dose UV. As expected, the introduction of semi-infectious particles with UV-induced lesions enhanced reassortment. In contrast to SI particles, inclusion of DI particles in modeled virus populations could not account for observed reassortment outcomes. DI particles were furthermore found experimentally to suppress detectable reassortment, relative to that seen with standard virus stocks, most likely by interfering with production of infectious progeny from co-infected cells. These data indicate that semi-infectious particles increase the rate of reassortment and may therefore accelerate adaptive evolution of IAV.  相似文献   

17.
Nonstructural protein 1 (NS1) plays a crucial function in the replication, spread, and pathogenesis of influenza virus by inhibiting the host innate immune response. Here we report the discovery and optimization of novel pyrazolopyridine NS1 antagonists that can potently inhibit influenza A/PR/8/34 replication in MDCK cells, rescue MDCK cells from cytopathic effects of seasonal influenza A strains, reverse NS1-dependent inhibition of IFN-β gene expression, and suppress the slow growth phenotype in NS1-expressing yeast. These pyrazolopyridines will enable researchers to investigate NS1 function during infection and how antagonists can be utilized in the next generation of treatments for influenza infection.  相似文献   

18.
Most highly pathogenic avian influenza A viruses cause only mild clinical signs in ducks, serving as an important natural reservoir of influenza A viruses. However, we isolated two H5N1 viruses that are genetically similar but differ greatly in virulence in ducks. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is low pathogenic. To determine the genetic basis for the high virulence of CK10 in ducks, we generated a series of single-gene reassortants between CK10 and GS10 and tested their virulence in ducks. Expression of the CK10 PA or hemagglutinin (HA) gene in the GS10 context resulted in increased virulence and virus replication. Conversely, inclusion of the GS10 PA or HA gene in the CK10 background attenuated the virulence and virus replication. Moreover, the PA gene had a greater contribution. We further determined that residues 101G and 237E in the PA gene contribute to the high virulence of CK10. Mutations at these two positions produced changes in virulence, virus replication, and polymerase activity of CK10 or GS10. Position 237 plays a greater role in determining these phenotypes. Moreover, the K237E mutation in the GS10 PA gene increased PA nuclear accumulation. Mutant GS10 viruses carrying the CK10 HA gene or the PA101G or PA237E mutation induced an enhanced innate immune response. A sustained innate response was detected in the brain rather than in the lung and spleen. Our results suggest that the PA and HA gene-mediated high virus replication and the intense innate immune response in the brain contribute to the high virulence of H5N1 virus in ducks.  相似文献   

19.
For influenza viruses to become infectious, the proteolytic cleavage of hemagglutinin (HA) is essential. This usually is mediated by trypsin-like proteases in the respiratory tract. The binding of plasminogen to influenza virus A/WSN/33 leads to the cleavage of HA, a feature determining its pathogenicity and neurotropism in mice. Here, we demonstrate that plasminogen also promotes the replication of other influenza virus strains. The inhibition of the conversion of plasminogen into plasmin blocked influenza virus replication. Evidence is provided that the activation of plasminogen is mediated by the host cellular protein annexin II, which is incorporated into the virus particles. Indeed, the inhibition of plasminogen binding to annexin II by using a competitive inhibitor inhibits plasminogen activation into plasmin. Collectively, these results indicate that the annexin II-mediated activation of plasminogen supports the replication of influenza viruses, which may contribute to their pathogenicity.  相似文献   

20.
Influenza A virus causes annual epidemics and occasional pandemics in humans. Here, we investigated four members of the fibroblast growth factor receptor (FGFR) family; FGFR1 to 4, and examined their expression patterns in human lung epithelial cells A549 with influenza A virus infection. We identified a functional role of FGFR1 in influenza A/Puerto Rico/8/1934 (PR8) and A/Anhui/01/2005 (H5N1) virus replication. Our results showed that FGFR1 silencing by siRNA interference promoted influenza A/PR8 and H5N1 virus replication in A549 cells, while lentivirus-mediated exogenous FGFR1 expression significantly suppressed influenza A virus replication; however, FGFR4 did not have the same effects. Moreover, FGFR1 phosphorylation levels were downregulated in A549 cells by influenza A virus infection, while the repression of FGFR1 kinase using PD173074, a potent and selective FGFR1 inhibitor, could enhance virus replication. Furthermore, we found that FGFR1 inhibits influenza virus internalization, but not binding, during viral entry. These results suggested that FGFR1 specifically antagonizes influenza A virus replication, probably by blocking viral entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号