首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The formation of lateral enamel in Neandertal anterior teeth has been the subject of recent studies. When compared to the anterior teeth of modern humans from diverse regions (Point Hope, Alaska; Newcastle upon Tyne, England; southern Africa), Neandertal anterior teeth appear to fall within the modern human range of variation for lateral enamel formation time. However, the lateral enamel growth curves of Neandertals are more linear than those of these modern human samples. Other researchers have found that the lateral enamel growth curves of Neandertals are more linear than those of Upper Paleolithic and Mesolithic modern humans as well. The statistical significance of this apparent difference between Neandertal and modern human lateral enamel growth curves is analyzed here. The more linear Neandertal enamel growth curves result from the smaller percentage of total perikymata located in the cervical halves of their teeth. The percentage of total perikymata in the cervical halves of teeth is therefore compared between the Neandertal sample (n=56 teeth) and each modern human population sample: Inuit (n=65 teeth), southern African (n=114 teeth), and northern European (n=115 teeth). There are 18 such comparisons (6 tooth types, Neandertals vs. each of the three modern human populations). Eighteen additional comparisons are made among the modern human population samples. Statistically significant differences are found for 16 of the 18 Neandertal vs. modern human comparisons but for only two of the 18 modern human comparisons. Statistical analyses repeated for subsamples of less worn teeth show a similar pattern. Because surface curvature is thought to affect perikymata spacing, we also conducted measurements to assess surface curvature in thirty teeth. Our analysis shows that surface curvature is not a factor in this lateral enamel growth difference between Neandertals and modern humans.  相似文献   

2.
We documented the spacing and distribution of perikymata on the buccal enamel surface of fossil hominin anterior teeth with reference to a sample of modern human and modern great ape teeth. A sample of 27 anterior teeth attributed to Australopithecus (5 to A. afarensis, 22 to A. africanus) and of 33 attributed to Paranthropus (6 to P. boisei, and 27 to P. robustus) were replicated and sputter-coated with gold to enable reflected light microscopy of their surface topography. Anterior teeth were then divided into 10 equal divisions of buccal crown height. The total perikymata count in each division of crown height was recorded using a binocular microscope fitted with a vernier micrometer eyepiece. Then the mean number of perikymata per millimeter was calculated for each division. Similar comparative data for a modern sample of 115 unworn human anterior teeth and 30 African great ape anterior teeth were collected from ground sections. Perikymata counts in each taxon (together with either known or presumed periodicities of perikymata) were then used to estimate enamel formation times in each division of crown height, for all anterior tooth types combined. The distributions of these estimates of time taken to form each division of crown height follow the same trends as the actual perikymata counts and differ between taxa in the same basic way. The distinction between modern African great apes and fossil hominins is particularly clear. Finally, we calculated crown formation times for each anterior tooth type by summing cuspal and lateral enamel formation times. Estimates of average crown formation times in australopiths are shorter than those calculated for both modern human and African great ape anterior teeth. The data presented here provide a better basis for exploring differences in perikymata spacing and distribution among fossil hominins, and provide the first opportunity to describe four specimens attributed to Homo in this context. Preliminary data indicate that differences may exist among the species attributed to early Homo, especially between Homo ergaster and Homo rudolfensis on the one hand, and Homo habilis sensu strico on the other.  相似文献   

3.
Discrete dental traits are used as proxies for biological relatedness among modern human populations and for alpha taxonomy and phylogeny reconstruction within the hominin clade. We present a comparison of the expression of lower molar dental traits (cusp 6, cusp 7, trigonid crest pattern, and protostylid) at the enamel-dentine junction (EDJ) in a variety of extant and fossil hominoid taxa, in order to assess the contribution of the EDJ to the morphology of these traits at the outer enamel surface (OES). Molars (n=44) were imaged nondestructively using high-resolution microCT, and three-dimensional surface models of the EDJ and OES were created to compare trait expression at each surface. Our results indicate that these dental traits originate at the EDJ, and that the EDJ is primarily responsible for their degree of expression at the OES. Importantly, variable trait morphology at the EDJ (often not easily recognizable at the OES) indicates that different developmental processes can produce traits that appear similar at the enamel surface, suggesting caution in intra- and intertaxonomic comparisons. The results also highlight the importance of the EDJ for understanding the morphological development of discrete traits, and for establishing graded scales of variation to compare trait frequency among groups for the purpose of taxonomic and/or phylogenetic analysis. Finally, this study demonstrates that imaging the EDJ of both worn and unworn fossil hominin teeth provides a novel source of information about tooth development and variation in crown morphology.  相似文献   

4.
Two hypotheses, based on previous work on Neandertal anterior and premolar teeth, are investigated here: (1) that estimated molar lateral enamel formation times in Neandertals are likely to fall within the range of modern human population variation, and (2) that perikymata (lateral enamel growth increments) are distributed across cervical and occlusal halves of the crown differently in Neandertals than they are in modern humans. To investigate these hypotheses, total perikymata numbers and the distribution of perikymata across deciles of crown height were compared for Neandertal, northern European, and southern African upper molar mesiobuccal (mb) cusps, lower molar mesiobuccal cusps, and the lower first molar distobuccal (db) cusp. Sample sizes range from five (Neandertal M(1)db) to 29 (southern African M(1)mb). Neandertal mean perikymata numbers were found to differ significantly from those of both modern human samples (with the Neandertal mean higher) only for the M(2)mb. Regression analysis suggests that, with the exception of the M(2)mb, the hypothesis of equivalence between Neandertal and modern human lateral enamel formation time cannot be rejected. For the M(2)mb, regression analysis strongly suggests that this cusp took longer to form in the Neandertal sample than it did in the southern African sample. Plots of perikymata numbers across deciles of crown height demonstrate that Neandertal perikymata are distributed more evenly across the cervical and occlusal halves of molar crowns than they are in the modern human samples. These results are integrated into a discussion of Neandertal and modern human lateral enamel formation across the dentition, with reference to issues of life history and enamel growth processes.  相似文献   

5.
Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong’s algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual’s dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form over a rather surprisingly long time (> 4.5 years). This approach provides tools for maximizing the recovery of developmental information in teeth, especially in the most difficult cases.  相似文献   

6.
Tooth crown morphology plays a central role in hominin systematics, but the removal of the original outer enamel surface by dental attrition often eliminates from consideration the type of detailed crown morphology that has been shown to discriminate among hominin taxa. This reduces the size of samples available for study. The enamel-dentine junction (EDJ) is the developmental precursor and primary contributor to the morphology of the unworn outer enamel surface, and its morphology is only affected after considerable attrition. In this paper, we explore whether the form of the EDJ can be used to distinguish between the mandibular molars of two southern African fossil hominins: Paranthropus (or Australopithecus) robustus and Australopithecus africanus. After micro-computed tomographic scanning the molar sample, we made high-resolution images of the EDJ and used geometric morphometrics to compare EDJ shape differences between species, in addition to documenting metameric variation along the molar row within each species. Landmarks were collected along the marginal ridge that runs between adjacent dentine horns and around the circumference of the cervix. Our results suggest that the morphology of the EDJ can distinguish lower molars of these southern African hominins, and it can discriminate first, second, and third molars within each taxon. These results confirm previous findings that the EDJ preserves taxonomically valuable shape information in worn teeth. Mean differences in EDJ shape, in particular dentine horn height, crown height, and cervix shape, are more marked between adjacent molars within each taxon than for the same molar between the two taxa.  相似文献   

7.
A recent study demonstrated that variation in enamel cap crown formation in the anterior teeth is greater than that in the molars from two geographically distinct populations: native indigenous southern Africans and northern Europeans. Eighty southern African and 69 northern European premolars (P3 and P4) were analyzed in the present study. Cuspal, lateral, and total enamel formation times were assessed. Although cuspal enamel formation times were not consistently different between the two populations, both lateral and total enamel formation times generally were. Bonferroni-corrected t-tests showed that southern Africans had significantly shorter lateral enamel formation time for five of the six cusps, as well as significantly shorter total enamel formation time for these same cusps. An analysis of covariance performed on the lingual cusps of the upper third and fourth premolars showed that differences in enamel formation times between these populations remained when crown height was statistically controlled. A further goal of this study was to ascertain, based on perikymata counts, what Neandertal periodicities would have to be in order for their teeth to have lateral enamel formation times equivalent to either southern Africans or northern Europeans. To this end, perikymata were counted on 32 Neandertal premolars, and the counts were inserted into regression formulae relating perikymata counts to periodicity for each population and each tooth type. Neandertal enamel formation times could be equivalent to those of southern Africans or northern Europeans only if their hypothetical periodicities fall within the range of periodicities for African apes and modern humans (i.e., 6-12 days). The analysis revealed that both populations could encompass Neandertal timings, with hypothetical periodicities based on the southern African population necessitating a lower range of periodicity (6-8 days) than those based on the northern European population (8-11 days).  相似文献   

8.
Molar crown morphology varies among primates from relatively simple in some taxa to more complex in others, with such variability having both functional and taxonomic significance. In addition to the primary cusps, crown surface complexity derives from the presence of crests, cuspules, and crenulations. Developmentally, this complexity results from the deposition of an enamel cap over a basement membrane (the morphology of which is preserved as the enamel‐dentine junction, or EDJ, in fully formed teeth). However, the relative contribution of the enamel cap and the EDJ to molar crown complexity is poorly characterized. In this study we examine the complexity of the EDJ and enamel surface of a broad sample of primate (including fossil hominin) lower molars through the application of micro‐computed tomography and dental topographic analysis. Surface complexity of the EDJ and outer enamel surface (OES) is quantified by first mapping, and then summing, the total number of discrete surface orientation patches. We investigate the relative contribution of the EDJ and enamel cap to crown complexity by assessing the correlation in patch counts between the EDJ and OES within taxa and within individual teeth. We identify three patterns of EDJ/OES complexity which demonstrate that both crown patterning early in development and the subsequent deposition of the enamel cap contribute to overall crown complexity in primates. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The Plio-Pleistocene site of Kromdraai, South Africa, is well known for the recovery of the holotype of Paranthropus robustus, one of nine individual hominids recovered from this site to date. Among the Kromdraai sample, the specimen KB 5223 comprises several isolated deciduous and permanent lower teeth assigned to Paranthropus, the only recognized genus at this site. However, a more recent analysis of this specimen suggested that it should be classified as Homo. The lower right first permanent molar of KB 5223 had been previously sectioned along the tips of the mesial cusps, exposing its enamel microstructure. Previous studies had indicated differences between Homo and Paranthropus at the microstructural level. A portable confocal scanning microscope was used to describe details of the enamel microstructure of the M1 and I1 of this specimen. Angles formed between the striae of Retzius and the enamel dentine junction (EDJ), daily secretion rates in cuspal enamel of the protoconid and metaconid and crown formation time of the RM1 are provided. The number of perikymata on the right I1 was counted. Results indicate that some features recorded in the KB 5223 molar differ from those of Paranthropus. However, the number of perikymata on the I1 is lower than values so far reported for early Homo but similar to Paranthropus. Crown formation time of KB 5223 M1 was markedly lower than mean values of M1 in H. sapiens, but similar to other early hominids. Daily secretion rates in the cuspal enamel of KB 5223 M1 were higher than in modern humans.  相似文献   

10.
邢松  周蜜  潘雷 《人类学学报》2020,39(4):521-531
东亚中更新世古人类在头骨、下颌骨、牙齿等解剖部位表现出不同程度的形态多样性,中期成员代表为直立人,而晚期成员的演化地位具有较大争议。为进一步了解东亚中更新世古人类内部的形态变异特点和为东亚中更新世晚期古人类分类提供依据,本文使用微分同胚的表面匹配(Diffeomorphic Surface Matching, DSM)和形态测量图(Morphometric map)对下颌第二臼齿(M2)釉质-齿质连接面的形状和齿冠侧面釉质厚度分布模式进行了量化分析。结果显示:1)东亚中更新世古人类与晚期人属成员(尼安德特人和现代人)存在较明显的形态差别;2)该时段晚期的东亚古人类相对中期直立人在侧面釉质厚度分布规律上具有独特性,并在釉质-齿质连接面的三维形状上与晚期人属成员更加接近。本文在以往对东亚中更新世古人类牙齿内外结构单个性状研究的基础上,使用三维形态测量方法进一步量化了M2釉质-齿质连接面三维形状和侧面釉质厚度分布模式两项重要特征的变异特点,这对未来该时段同类型牙齿的形态鉴定以及解决东亚中更新世晚期古人类的分类地位具有一定意义。  相似文献   

11.
Distinctive expressions and incidences of discrete dental traits at the outer enamel surface (OES) contribute to the diagnoses of many early hominin taxa. Examination of the enamel-dentine junction (EDJ), imaged non-destructively using micro-computed tomography, has elucidated the morphological development of dental traits and improved interpretations of their variability within and among taxa. The OES expressions of one of these dental traits, the protostylid, have been found to differ among African Plio-Pleistocene fossil hominin taxa. In this study protostylid expression is examined at the OES and at the EDJ of Paranthropus robustus (n = 23) and Australopithecus africanus (n = 28) mandibular molars, with the goals of incorporating EDJ morphology into the definition of the protostylid and assessing the relative contribution of the EDJ and enamel cap to its expression in these taxa. The results provide evidence a) of statistically significant taxon-specific patterns of protostylid morphology at the EDJ that are not evident at the OES; b) that in P. robustus, thick enamel reduces the morphological correspondence between the form of the protostylid seen at the EDJ and the OES, and c) that if EDJ images can be obtained, then the protostylid retains its taxonomic value even in worn teeth.  相似文献   

12.
Bromage and Dean originally outlined a nondestructive method for the study of enamel formation and concluded that early hominids resembled the extant apes more closely than they did modern humans in their rates of growth and maturation. The method used assumed that an enamel circadian rhythmicity was referable to a longer near-weekly period represented by perikymata (periodic surface growth features). This assumption became a matter of debate and discussion. In this study, developing teeth in Macaca nemestrina were labeled with polychrome fluorescent dyes. Examination of the distribution of these dyes in two sectioned teeth provides experimental confirmation of enamel circadian periodicity.  相似文献   

13.
胡荣  赵凌霞 《人类学学报》2012,31(4):371-380
釉面横纹的分布与数目可以反映牙齿生长发育的时间和速率变化, 在化石研究中能为复原个体生活史提供重要依据。本研究运用扫描电子显微镜观察华南化石猩猩门齿、犬齿釉面横纹分布与数目, 并估算门齿和犬齿牙冠形成时间, 结果如下: 牙冠从牙尖至牙颈方向釉面横纹分布密度有疏密变化, 牙尖釉面横纹密度小于10条/mm, 中间至牙颈釉面横纹密度较尖部增大, 大约10-15条/mm; 犬齿釉面横纹数目多于门齿, 雄性犬齿釉面横纹数目多于雌性; 根据釉面横纹计数及其生长周期的组织切片观察结果, 估算门齿牙冠形成时间大约为2.97-6.66年, 犬齿雄性长于雌性, 分别为6.25-11.31年和4.28-7.29年。与一些古猿、早期人类、现代人以及现生大猿比较, 华南化石猩猩釉面横纹整体密度稍大于南方古猿和傍人, 小于黑猩猩、大猩猩、现代人和禄丰古猿; 除侧门齿外, 华南化石猩猩釉面横纹数目明显多于南方古猿、傍人和现代人, 与大猩猩接近; 华南猩猩前部牙齿牙冠形成时间与现生大猿、禄丰古猿差别不大, 与现生猩猩最相近, 长于南方古猿和傍人。  相似文献   

14.
Previous research has demonstrated that species and subspecies of extant chimpanzees and bonobos can be distinguished on the basis of the shape of their molar crowns. Thus, there is potential for fossil taxa, particularly fossil hominins, to be distinguished at similar taxonomic levels using molar crown morphology. Unfortunately, due to occlusal attrition, the original crown morphology is often absent in fossil teeth, and this has limited the amount of shape information used to discriminate hominin molars. The enamel–dentine junction (EDJ) of molar teeth preserves considerable shape information, particularly in regard to the original shape of the crown, and remains present through the early stages of attrition. In this study, we investigate whether the shape of the EDJ of lower first and second molars can distinguish species and subspecies of extant Pan. Micro‐computed tomography was employed to non‐destructively image the EDJ, and geometric morphometric analytical methods were used to compare EDJ shape among samples of Pan paniscus (N = 17), Pan troglodytes troglodytes (N = 13), and Pan troglodytes verus (N = 18). Discriminant analysis indicates that EDJ morphology distinguishes among extant Pan species and subspecies with a high degree of reliability. The morphological differences in EDJ shape among the taxa are subtle and relate to the relative height and position of the dentine horns, the height of the dentine crown, and the shape of the crown base, but their existence supports the inclusion of EDJ shape (particularly those aspects of shape in the vertical dimension) in the systematic analysis of fossil hominin lower molars. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Numerous studies have reported on enamel and dentine development in hominoid molars, although little is known about intraspecific incremental feature variation. Furthermore, a recent histological study suggested that there is little or no time between age at chimpanzee crown completion and age at molar eruption, which is unlikely given that root growth is necessary for tooth eruption. The study presented here redefines growth standards for chimpanzee molar teeth and examines variation in incremental features. The periodicity of Retzius lines in a relatively large sample was found to be 6 or 7 days. The number of Retzius lines and cuspal enamel thickness both vary within a cusp type, among cusps, and among molars, resulting in marked variation in formation time. Daily secretion rate is consistent within analogous cuspal zones (inner, middle, and outer enamel) within and among cusp types and among molar types. Significantly increasing trends are found from inner to outer cuspal enamel (3 to 5 microns/day). Cuspal initiation and completion sequences also vary, although sequences for mandibular molar cusps are more consistent. Cusp-specific formation time ranges from approximately 2 to 3 years, increasing from M1 to M2, and often decreasing from M2 to M3. These times are intermediate between radiographic studies and a previous histological study, although both formation time within cusps and overlap between molars vary considerably. Cusp-specific (coronal) extension rates range from approximately 4 to 9 microns/day, and root extension rates in the first 5 mm of roots range from 3 to 9 microns/day. These rates are greater in M1 than in M2 or M3, and they are greater in mandibular molars than in respective maxillary molars. This significant enlargement of comparative data on nonhuman primate incremental development demonstrates that developmental variation among cusp and molar types should be considered during interpretations and comparisons of small samples of fossil hominins and hominoids.  相似文献   

16.
Hominin-cercopithecid comparisons have been used in palaeoanthropology for over forty years. Fossil cercopithecids can be used as a 'control group' to contextualize the adaptations and evolutionary trends of hominins. Observations made on modern cercopithecids can also be applied to questions about human evolution. This article reviews the history of hominin-cercopithecid comparisons, assesses the strengths and weaknesses of cercopithecids as comparators in studies of human evolution, and uses cercopithecid models to explore hominin inter-specific dynamics. Cercopithecids appear to be excellent ecological referents, but may be less good when considering the cognitive abilities and cultural adaptations of hominins. Comparison of cercopithecid and hominin adaptations at Koobi Fora in East Africa indicates that, whereas the cercopithecids were largely grass- or leaf-eating, the hominins occupied a generalist niche, apparently excluding other primate generalist-frugivores. If any of the hominin species at Koobi Fora were sympatric, analogies with modern cercopithecids suggest that inter-specific contact cannot be discounted and may even have been beneficial.  相似文献   

17.
The shape of the enamel-dentine junction (EDJ) in primate molars is regarded as a potential indicator of phylogenetic relatedness because it may be morphologically more conservative than the outer enamel surface (OES), and it may preserve vestigial features (e.g., cuspules, accessory ridges, and remnants of cingula) that are not manifest at the OES. Qualitative accounts of dentine-horn morphology occasionally appear in character analyses, but little has been done to quantify EDJ shape in a broad taxonomic sample. In this study, we examine homologous planar sections of maxillary molars to investigate whether measurements describing EDJ morphology reliably group extant anthropoid taxa, and we extend this technique to a small sample of fossil catarrhine molars to assess the utility of these measurements in the classification of fossil teeth. Although certain aspects of the EDJ are variable within a taxon, a taxon-specific cross-sectional EDJ configuration predominates. A discriminant function analysis classified extant taxa successfully, suggesting that EDJ shape may a reliable indicator of phyletic affinity. When considered in conjunction with aspects of molar morphology, such as developmental features and enamel thickness, EDJ shape may be a useful tool for the taxonomic assessment of fossil molars.  相似文献   

18.
The thickness of mammalian tooth enamel plays a prominent role in paleontology because it correlates with diet, and thicker enamel protects against tooth breakage and wear. Hominid evolutionary studies have stressed the importance of this character for over 30 years, from the identification of "Ramapithecus" as an early Miocene hominid, to the recent discovery that the earliest hominids display molar enamel intermediate in thickness between extant chimpanzees and Australopithecus. Enamel thickness remains largely unexplored for nonhominoid primate fossils, though there is significant variation across modern species. Despite the importance of enamel thickness variation to primate evolution, the mechanisms underlying variation in this trait have not yet been elucidated. We report here on the first quantitative genetic analysis of primate enamel thickness, an analysis based on 506 pedigreed baboons from a captive breeding colony. Computed tomography analysis of 44 Papio mandibular molars shows a zone of sufficiently uniform enamel thickness on the lateral surface of the protoconid. With this knowledge, we developed a caliper metric measurement protocol for use on baboon molars worn to within this zone, enabling the collection of a data set large enough for genetic analyses. Quantitative genetic analyses show that a significant portion of the phenotypic variance in enamel thickness is due to the additive effects of genes and is independent of sex and tooth size. Our models predict that enamel thickness could rapidly track dietary adaptive shifts through geological time, thus increasing the potential for homoplasy in this character. These results have implications for analyses of hominoid enamel thickness variation, and provide a foundation from which to explore the evolution of this phenotype in the papionin fossil record.  相似文献   

19.
The stable carbon isotope ratio of fossil tooth enamel carbonate is determined by the photosynthetic systems of plants at the base of the animal's foodweb. In subtropical Africa, grasses and many sedges have C(4)photosynthesis and transmit their characteristically enriched 13C/(12)C ratios (more positive delta13C values) along the foodchain to consumers. We report here a carbon isotope study of ten specimens of Australopithecus africanus from Member 4, Sterkfontein (ca. 2.5 to 2.0Ma), compared with other fossil mammals from the same deposit. This is the most extensive isotopic study of an early hominin species that has been achieved so far. The results show that this hominin was intensively engaged with the savanna foodweb and that the dietary variation between individuals was more pronounced than for any other early hominin or non-human primate species on record. Suggestions that more than one species have been incuded in this taxon are not supported by the isotopic evidence. We conclude that Australopithecus africanus was highly opportunistic and adaptable in its feeding habits.  相似文献   

20.
Accurate age estimations for enamel formation and the timing of enamel hypoplasia have traditionally only been available through histological analyses of dental thin sections, which is a difficult and destructive process. However, an association between striae of Retzius periodicity, crucial for accurate aging, and the total number of striae in imbricational enamel has been reported in the literature. This means periodicity can be estimated nondestructively but is reliant on all perikymata being visible along the crown surface. Therefore, crowns with worn or damaged surfaces may not be able to be assessed, potentially limiting sample sizes. We tested this relationship in a modern New Zealand sample and investigated whether reliable associations might be identified using only partial perikymata counts from the cervical half of the crown. Using mandibular canines (n = 11), the distribution of perikymata per decile was recorded using high definition replica surfaces. Thin sections of the same crowns were used to assess periodicity histologically along with striae of Retzius distributions. A strong correlation between total striae numbers and periodicity was also identified in our sample. Furthermore, we report strong correlations that allow periodicity to be estimated from perikymata counts using only 10% of crown height when certain deciles are used. Based on these findings, we propose a simple matrix that can be developed for nondestructively estimating periodicity based on the range of perikymata counts in the sixth to ninth deciles. Am J Phys Anthropol 154:251–258, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号