首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of clones carrying the F plasmid transfer operon gene, traF, were analyzed. Proteins expressed in maxicells were labeled with [35S]methionine and examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Clones carrying the wild-type traF gene expressed two polypeptide products that were not products of clones containing the traF13 amber mutation. These migrated with apparent molecular weights (Ma) of 27,000 and 25,000. A pulse-chase experiment suggested that the larger product was a precursor of the smaller one. In the presence of ethanol, the Ma-27,000 polypeptide accumulated and the Ma-25,000 product was not expressed. These results indicated that the traF protein undergoes proteolytic processing associated with export. Cell fractionation experiments further indicated that the greatest concentration of the mature (Ma 25,000) TraF protein was located in the periplasm. The DNA sequence of traF and the position of the transition mutation in traF13 DNA were also determined. Sequence analysis suggested that traF would be expressed as a 247-amino-acid, Mr-28,006 polypeptide. The 19 amino acids at the amino terminus of this polypeptide appear to constitute a typical membrane leader peptide, while the remainder of the molecule (Mr 25,942) is predicted to be primarily hydrophilic in character.  相似文献   

2.
We have characterized a previously unidentified gene, trbC, which is contained in the transfer region of the Escherichia coli K-12 fertility factor, F. Our data show that the trbC gene is located between the F plasmid genes traU and traN. The product of trbC was identified as a polypeptide with an apparent molecular weight (Ma) of 23,500 that is processed to an Ma-21,500 mature protein. When ethanol was present, the Ma-23,500 polypeptide accumulated; the removal of ethanol resulted in the appearance of the processed mature protein. Subcellular fractionation experiments demonstrated that the processed, Ma-21,500 mature protein was located in the periplasm. DNA sequence analysis showed that trbC encodes a 212-amino-acid Mr-23,432 polypeptide that could be processed to a 191-amino-acid Mr-21,225 mature protein through the removal of a typical amino-terminal signal sequence. We also constructed two different Kmr gene insertion mutations in trbC and crossed these onto the transmissible F plasmid derivative pOX38. We found that cells carrying pOX38 trbC mutant plasmids were transfer deficient and resistant to infection by F-pilus-specific phages. Transfer proficiency and bacteriophage sensitivity were restored by complementation when a trbC+ plasmid clone was introduced into these cells. These results showed that trbC function is essential to the F plasmid conjugative transfer system and suggested that the TrbC protein participates in F-pilus assembly.  相似文献   

3.
Analysis of Escherichia coli K12 F factor transfer genes: traQ, trbA, and trbB   总被引:12,自引:0,他引:12  
J H Wu  D Moore  T Lee  K Ippen-Ihler 《Plasmid》1987,18(1):54-69
The genes that encode the transfer properties of plasmid F, the fertility factor of Escherichia coli K12, are known to be clustered over a large, 33.3-kb segment of F DNA. As the central segment of the transfer region has not previously been well characterized, we constructed a detailed restriction map of the large F EcoRI DNA fragment, fl, and isolated a series of plasmid derivatives that carry various overlapping segments of this F tra operon DNA. We also analyzed the protein products of those clones that carried DNA segments extending over the region between traF and traH. This region was known to include traQ, a gene required for efficient conversion of the direct product of traA to the 7000-Da pilin polypeptide. We identified the traQ product as a polypeptide that migrates as a 12,500-Da protein on sodium dodecyl sulfate-polyacrylamide gels. We also detected the products of two other new genes that we have named trbA and trbB. These polypeptides migrate with apparent molecular weights of 14,200 and 18,400, respectively. Analysis of plasmid deletion derivatives that we constructed in vitro shows that these genes map in the order traF trbA traQ trbB traH. The presence of a plasmid carrying a small 0.43-kb fragment that expressed only the 12,500 traQ product caused the traA product of a co-resident compatible plasmid to be converted to the 7000-Da pilin polypeptide, demonstrating that TraQ is the only tra operon product required for this step of F-pilin biosynthesis.  相似文献   

4.
The traW gene of the Escherichia coli K-12 sex factor, F, encodes one of the numerous proteins required for conjugative transfer of this plasmid. We have found that the nucleotide sequence of traW encodes a 210-amino-acid, 23,610-Da polypeptide with a characteristic amino-terminal signal peptide sequence; in DNA from the F lac traW546 amber mutant, the traW open reading frame is interrupted at codon 141. Studies of traW expression in maxicells in the presence and absence of ethanol demonstrate that the traW product does undergo signal sequence processing. Cell fractionation experiments additionally demonstrated that mature TraW is a periplasmic protein. Electron microscopy also showed that F lac traW546 hosts do not express F pili, confirming that TraW is required for F-pilus assembly. Our nucleotide sequence also revealed the existence of an additional gene, trbI, located between traC and traW. The trbI gene encodes a 128-amino-acid polypeptide which could be identified as a 14-kDa protein product. Fractionation experiments demonstrated that TrbI is an intrinsic inner-membrane protein. Hosts carrying the pOX38-trbI::kan insertion mutant plasmids that we constructed remained quite transfer proficient but exhibited increased resistance to F-pilus-specific phages. Mutant plasmids pOX38-trbI472 and pOX38-trbI473 expressed very long F pili, suggestive of a pilus retraction deficiency. Expression of an excess of TrbI in hosts carrying a wild-type pOX38 plasmid also caused F-pilus-specific phage resistance. The possibility that TrbI influences the kinetics of pilus outgrowth and/or retraction is discussed.  相似文献   

5.
During bacterial conjugation, the single-stranded DNA molecule is transferred through the cell envelopes of the donor and the recipient cell. A membrane-spanning transfer apparatus encoded by conjugative plasmids has been proposed to facilitate protein and DNA transport. For the IncPalpha plasmid RP4, a thorough sequence analysis of the gene products of the transfer regions Tra1 and Tra2 revealed typical features of mainly inner membrane proteins. We localized essential RP4 transfer functions to Escherichia coli cell fractions by immunological detection with specific polyclonal antisera. Each of the gene products of the RP4 mating pair formation (Mpf) system, specified by the Tra2 core region and by traF of the Tra1 region, was found in the outer membrane fraction with one exception, the TrbB protein, which behaved like a soluble protein. The membrane preparation from Mpf-containing cells had an additional membrane fraction whose density was intermediate between those of the cytoplasmic and outer membranes, suggesting the presence of attachment zones between the two E. coli membranes. The Tra1 region is known to encode the components of the RP4 relaxosome. Several gene products of this transfer region, including the relaxase TraI, were detected in the soluble fraction, but also in the inner membrane fraction. This indicates that the nucleoprotein complex is associated with and/or assembled facing the cytoplasmic site of the E. coli cell envelope. The Tra1 protein TraG was predominantly localized to the cytoplasmic membrane, supporting its potential role as an interface between the RP4 Mpf system and the relaxosome.  相似文献   

6.
The F tra operon region that includes genes trbA, traQ, and trbB was analyzed. Determination of the DNA sequence showed that on the tra operon strand, the trbA gene begins 19 nucleotides (nt) distal to traF and encodes a 115-amino-acid, Mr-12,946 protein. The traQ gene begins 399 nt distal to trbA and encodes a 94-amino-acid, Mr-10,867 protein. The trbB gene, which encodes a 179-amino-acid, Mr-19,507 protein, was found to overlap slightly with traQ; its start codon begins 11 nt before the traQ stop codon. Protein analysis and subcellular fractionation of the products expressed by these genes indicated that the trbB product was processed and that the mature form of this protein accumulated in the periplasm. In contrast, the protein products of trbA and traQ appeared to be unprocessed, membrane-associated proteins. The DNA sequence also revealed the presence of a previously unsuspected locus, artA, in the region between trbA and traQ. The artA open reading frame was found to lie on the DNA strand complementary to that of the F tra operon and could encode a 104-amino-acid, 12,132-dalton polypeptide. Since this sequence would not be expressed as part of the tra operon, the activity of a potential artA promoter region was assessed in a galK fusion vector system. In vivo utilization of the artA promoter and translational start sites was also examined by testing expression of an artA-beta-galactosidase fusion protein. These results indicated that the artA gene is expressed from its own promoter.  相似文献   

7.
S K Farrand  I Hwang    D M Cook 《Journal of bacteriology》1996,178(14):4233-4247
The Ti plasmids of Agrobacterium tumefaciens encode two transfer systems. One mediates the translocation of the T-DNA from the bacterium to a plant cell, while the other is responsible for the conjugal transfer of the entire Ti plasmid from one bacterium to another. The determinants responsible for conjugal transfer map to two regions, tra and trb, of the nopaline-type Ti plasmid pTiC58. By using transposon mutagenesis with Tn3HoHo1, we localized the tra determinants to an 8.5-kb region that also contains the oriT region. Fusions to lacZ formed by transposon insertions indicated that this region is expressed as two divergently transcribed units. We determined the complete nucleotide sequence of an 8,755-bp region of the Ti plasmid encompassing the transposon insertions defining tra. The region contains six identifiable genes organized as two units divergently transcribable from a 258-bp inter-genic region that contains the oriT site. One unit encodes traA, traF, and traB, while the second encodes traC, traD, and traG. Reporter insertions located downstream of both sets of genes did not affect conjugation but were expressed, suggesting that the two units encode additional genes that are not involved in transfer under the conditions tested. Proteins of the predicted sizes were expressible from traA, traC, traD, and traG. The products of several Ti plasmid tra genes are related to those of other conjugation systems. The 127-kDa protein expressed from traA contains domains related to MobA of RSF1O1O and to the helicase domain of TraI of plasmid F. The translation product of traF is related to TraF of RP4, and that of traG is related to TraG of RP4 and to VirD4 of the Ti plasmid T-DNA transfer system. Genetic analysis indicated that at least traG and traF are essential for conjugal transfer, while sequence analysis predicts that traA also encodes an essential function. traB, while not essential, is required for maximum frequency of transfer. Patterns of sequence relatedness indicate that the oriT and the predicted cognate site-specific endonuclease encoded by traA share lineage with those of the transfer systems of RSF1010 and plasmid F, while genes of the Ti plasmid encoding other essential tra functions share common ancestry with genes of the RP4 conjugation system.  相似文献   

8.
The gene encoding the TraM protein of the conjugative plasmid F was cloned, overexpressed and the gene product was purified. The TraM protein was found in the cytoplasm of cells carrying the F plasmid with a smaller amount in the inner membrane. DNase I footprinting experiments showed that the purified protein protects three regions in the F oriT locus with different affinity for the upper and lower strands of DNA. A 15-nucleotide motif was identified within the protected regions that represented the DNA-binding site. The TraM protein was also found to bind to a sequence in the oriT region of the non-conjugative plasmid ColE1 that resembles the three binding sites in the F oriT region.  相似文献   

9.
Synthesis of F pilin.   总被引:9,自引:5,他引:4       下载免费PDF全文
Transfer of the Escherichia coli fertility plasmid, F, is dependent on expression of F pili. Synthesis of F-pilin subunits is known to involve three F plasmid transfer (tra) region products: traA encodes the 13-kDa precursor protein, TraQ permits this to be processed to the 7-kDa pilin polypeptide, and TraX catalyzes acetylation of the pilin amino terminus. Using cloned tra sequences, we performed a series of pulse-chase experiments to investigate the effect of TraQ and TraX on the fate of the traA product. In TraQ- cells, the traA gene product was found to be very unstable. While traA polypeptides of various sizes were detected early in the chase period, almost all were degraded within 5 min. Rapid traA product degradation was also observed in TraX+ cells, although an increased percentage of these products persisted during the chase. In TraQ+ cells, most of the traA product was processed to the 7-kDa pilin polypeptide within the 1-min pulse period; this product [7(Q)] was not degraded but was increasingly converted to an 8-kDa form [8(Q)] as the chase continued, suggesting that host enzymes can modify the pilin polypeptide. Similar results were observed in TraQ+ TraX+ cells, but the primary 7-kDa product appeared to be N-acetylated pilin (Ac-7). An 8-kDa product (Ac-8) was also detected, but this band did not increase in intensity during the chase. We suggest a pathway in which TraQ prevents the traA product from folding to a readily degradable conformation and assists its entry into the membrane, Leader peptidase I cleaves the traA product signal sequence, and a subset of the pilin polypeptides becomes modified by host enzymes; TraX then acetylates the N terminal of both the modified and unmodified pilin polypeptides.  相似文献   

10.
DNA transfer by bacterial conjugation requires a mating pair formation (Mpf) system that specifies functions for establishing the physical contact between the donor and the recipient cell and for DNA transport across membranes. Plasmid RP4 (IncP alpha) contains two transfer regions designated Tra1 and Tra2, both of which contribute to Mpf. Twelve components are essential for Mpf, TraF of Tra1 and 11 Tra2 proteins, TrbB, -C, -D, -E, -F, -G, -H, -I, -J, -K, and -L. The phenotype of defined mutants in each of the Tra2 genes was determined. Each of the genes, except trbK, was found to be essential for RP4-specific plasmid transfer and for mobilization of the IncQ plasmid RSF1010. The latter process did not absolutely require trbF, but a severe reduction of the mobilization frequency occurred in its absence. Transfer proficiency of the mutants was restored by complementation with defined Tra2 segments containing single trb genes. Donor-specific phage propagation showed that traF and each of the genes encoded by Tra2 are involved. Phage PRD1, however, still adsorbed to the trbK mutant strain but not to any of the other mutant strains, suggesting the existence of a plasmid-encoded receptor complex. Strains containing the Tra2 plasmid in concert with traF were found to overexpress trb products as well as extracellular filaments visualized by electron microscopy. Each trb gene and traF are needed for the formation of the pilus-like structures. The trbK gene, which is required for PRD1 propagation and for pilus production but not for DNA transfer on solid media, encodes the RP4 entry-exclusion function. The components of the RP4 Mpf system are discussed in the context of related macromolecule export systems.  相似文献   

11.
12.
The product of the Escherichia coli F plasmid traI gene is required for DNA transfer via bacterial conjugation. This bifunctional protein catalyzes the unwinding of duplex DNA and is a sequence-specific DNA transesterase. The latter activity provides the site- and strand-specific nick required to initiate DNA transfer. To address the role of the TraI helicase activity in conjugative DNA transfer traI mutants were constructed and their function in DNA transfer was evaluated using genetic and biochemical methods. A traI deletion/insertion mutant was transfer-defective as expected. A traI C-terminal deletion that removed the helicase-associated motifs was also transfer-defective despite the fact that the region of traI encoding the transesterase activity was intact. Biochemical studies demonstrated that the N-terminal domain was sufficient to catalyze oriT-dependent transesterase activity. Thus, a functional transesterase was not sufficient to support DNA transfer. Finally, a point mutant, TraI-K998M, that lacked detectable helicase activity was characterized. This protein catalyzed oriT-dependent transesterase activity in vitro and in vivo but failed to complement a traI deletion strain in conjugative DNA transfer assays. Thus, both the transesterase and helicase activities of TraI are essential for DNA strand transfer.  相似文献   

13.
J Haase  M Kalkum    E Lanka 《Journal of bacteriology》1996,178(23):6720-6729
TrbK is the only plasmid-encoded gene product involved in entry exclusion of the broad-host-range plasmid RP4. The corresponding gene, trbK, coding for a protein of 69 amino acid residues maps in the Tra2 region within the mating pair formation genes. TrbK carries a lipid moiety at the N-terminal cysteine of the mature 47-residue polypeptide. The mutant protein TrbKC23G cannot be modified or proteolytically processed but still acts in entry exclusion with reduced efficiency. An 8-amino-acid truncation at the C terminus of TrbK results in a complete loss of the entry exclusion activity but still allows the protein to be processed. TrbK localizes predominately to the cytoplasmic membrane. Its function depends on presence in the recipient cell but not in the donor cell. TrbK excludes plasmids of homologous systems of the P complex; it is inert towards the IncI system. The likely target for TrbK action is the mating pair formation system, because DNA or any of the components of the relaxosome were excluded as possible targets.  相似文献   

14.
Summary We had previously demonstrated that several F specific polypeptide bands could be detected in the membranes of Flac, but not F- strains of Escherichia coli K 12, (Moore et al. 1981). One of these polypeptides co-migrated with F-pilin protein on polyacrylamide gels. We have now analyzed 35[S]methionine labelled membrane preparations from a series of strains containing Flac tra mutant plasmids. The F-pilin polypeptide was absent from preparations of strains containing all traA mutants tested, confirming the importance of the traA gene in F-pilin biosynthesis. A polypeptide which migrated in the F-pilin position was still present, however, in membranes prepared from Flac strains carrying mutations in traL, traE, traK, traB, traV, traW, traC, traU, traF, traH or traG despite the inability of these mutants to elaborate F-pili filaments. Thus, all of these gene products may be concerned with F-pilus assembly and outgrowth rather than biosynthesis of the F-pilin subunit. The polar mutation tra-4 did, however, prevent the appearance of pilin polypeptide, indicating that at least one unidentified gene in the region between traE and traG must also be required in F-pilin biosynthesis.Our analysis also permitted the identification of a 100,000 dalton membrane protein as the product of traG. The appearance of an F specific 12,000 dalton protein was prevented by traD amber mutants. As expected, traJ mutants prevented the expression of all the tra operon products detected except the product of traT. The traT product band was reduced only to 50–60% of its normal intensity.  相似文献   

15.
The DNA encoding the surface exclusion genes traS and traT of the F sex factor of Escherichia coli K-12 has been sequenced and the biological activity of the various terminators and promoters determined. The data show that traS encodes a 16,861 Mr protein with no apparent signal sequence, as expected for its cytoplasmic membrane location. The protein is extremely hydrophobic. traS has its own promoter and a weak terminator region follows the gene. After the traS termination loop there is a small intergenic region before the traT promoter. The traT gene encodes a 25,932 Mr precursor for the 23,709 Mr mature protein. The amino-terminal signal peptide is 21 amino acid residues, consistent with it being an outer membrane lipoprotein. A very strong termination loop follows the gene and adjacent to this a further loop can be predicted from the sequence. These secondary structures would be expected to enhance the stability of the mRNA in the presence of 3' specific ribonucleases accounting for the apparent long half-life of the messenger. The amino acid sequence of the mature product of traT of F differs from that of R100 by only a single amino acid substitution (Gly for Ala at position 119), whereas that of pED208 (Folac) differs at 40 positions. traT lies in a region of heteroduplex homology between F and R100, and the nucleotide sequence confirms this and demonstrates that this homology breaks down immediately preceding and following the coding region. Sequence analysis shows that this is also so for pED208. Thus the entire traS of F, R100 and pED208 are very different at the DNA level. An open reading frame, preceded by a typical promoter sequence and a weak and poorly located Shine-Dalgarno sequence, follows traT and corresponds to the start of traD. Alone, this promoter appears to be inactive.  相似文献   

16.
Donor bacteria containing JCFL39, a temperature-sensitive traD mutant of the F sex factor, were used at the nonpermissive temperature to accumulate stable mating pairs with recipient cells. At this stage in conjugation, extracellular F pili were removed by treatment with 0.01% sodium dodecyl sulfate. Upon then shifting to the permissive temperature for JCFL39, transfer of the F plasmid was observed. The mating pairs that were accumulated with JCFL39 at the nonpermissive temperature were readily observed by electron microscopy in wall-to-wall contact with the recipient bacteria. These results demonstrate that the traD product, which is known to be required in transferring DNA to a recipient bacterium, acts after the stage at which extracellular F pili are required. In addition, we concluded that DNA transfer takes place while donor and recipient cells are in surface contact and not necessarily through an extended F pilus as envisioned in some models of bacterial conjugation.  相似文献   

17.
Transfer inhibition of RP4 by F factor   总被引:6,自引:0,他引:6  
When RP4 and F factors were brought together into one E. coli cell, the F factor reduced 500-1000-fold the frequency of transfer of RP4. However, F had almost no effect on the surface exclusion and pilus formation by RP4. In contrast, RP4 did not affect the transfer of F. Using in vitro recombinant DNA techniques, a gene of F responsible for the above-mentioned transfer inhibition of RP4 was located within the BamHI fragment (40.4-42.8 kb) of the mini-F sequence on F. From the result of product analysis using minicells, the responsible gene in the BamHI fragment was inferred to encode the 33 K protein.  相似文献   

18.
Transfer of donor cell proteins to the recipient bacterium was examined in F- and RP4-mediated conjugation. Transfer of a 120 kD polypeptide, identified as the larger product of the plasmid DNA primase gene, was readily detected during RP4-promoted conjugation. The protein was transmitted to the cytoplasm of the recipient, presumably complexed to the transferred ssDNA. F DNA was transferred without detectable association with any cytoplasmic tra protein or with the ssDNA-binding protein encoded by the plasmid. However, a 92 kD protein, possibly F TraD product, was transmitted to the membrane fraction of the recipient cell.  相似文献   

19.
The products of the btuCED region of the Escherichia coli chromosome participate in the transport of vitamin B12 across the cytoplasmic membrane. The nucleotide sequence of the 3,410-base-pair HindIII-HincII DNA fragment carrying a portion of the himA gene and the entire btuCED region was determined. Comparison of the location of the open reading frames with the gene boundaries defined by transposon insertions allowed the assignment of polypeptide products to gene sequences. The btuC product is a highly nonpolar integral membrane protein of molecular weight 31,683. The distribution of hydrophobic regions suggests the presence of numerous membrane-spanning domains. The btuD product is a relatively polar but membrane-associated polypeptide of Mr 27,088 and contains segments bearing extensive homology to the ATP-binding peripheral membrane constituents of periplasmic binding protein-dependent transport systems. Other regions of this protein are similar to portions of the outer membrane vitamin B12 receptor. The btuE product (Mr 20,474) appears to have a periplasmic location. It has the mean hydropathy of a soluble protein but lacks an obvious signal sequence. The cellular locations and structural and sequence homologies of the Btu polypeptides point to the similarity of these three proteins to components of binding protein-dependent transport systems. However, the dependence on a periplasmic vitamin B12-binding protein has not yet been demonstrated.  相似文献   

20.
F and R27 are conjugative plasmids of enteric bacteria belonging to the IncF and IncHI1 plasmid incompatibility groups, respectively. Based on sequence analysis, two genes of the F transfer region, traF and trbB, and three genes of the R27 transfer region, trhF, dsbC, and htdT, are predicted to encode periplasmic proteins containing a C-terminal thioredoxin fold. The C-X-X-C active-site motif of thioredoxins is present in all of these proteins except TraF(F). Escherichia coli carrying a dsbA mutation, which is deficient in disulfide bond formation, cannot synthesize pili and exhibits hypersensitivity to dithiothreitol (DTT) as monitored by mating ability. Overproduction of the E. coli disulfide bond isomerase DsbC, TrbB(F), DsbC(R27), or HtdT(R27), but not TraF(F) or TrhF(R27), reverses this hypersensitivity to DTT. Site-directed mutagenesis established that the C-X-X-C motif was necessary for this activity. Secretion into the periplasm of the C-terminal regions of TrbB(F) and DsbC(R27), containing putative thioredoxin folds, but not TrhF(R27), partially complemented the host dsbA mutation. A trbB(F) deletion mutant showed a 10-fold-lower mating efficiency in an E. coli dsbC null strain but had no phenotype in wild-type E. coli, suggesting redundancy in function between TrbB(F) and E. coli DsbC. Our results indicate that TrbB(F), DsbC(R27), and HtdT(R27) are putative disulfide bond isomerases for their respective transfer systems. TraF(F) is essential for conjugation but appears to have a function other than disulfide bond chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号