首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Targeting of a cytosolic protein to the nuclear periphery   总被引:9,自引:6,他引:3       下载免费PDF全文
《The Journal of cell biology》1990,111(6):2829-2837
The yeast nuclear envelope protein NSP1 is located at the nuclear pores and mediates its essential function via the carboxy-terminal domain. The passenger protein, cytosolic dihydrofolate reductase from mouse, was fused to the 220 residue long NSP1 carboxy-terminal domain. When expressed in yeast, this chimeric protein was tightly associated with nuclear structures and was localized at the nuclear periphery very similar to authentic NSP1. Furthermore, the DHFR-C-NSP1 fusion protein was able to complement a yeast mutant lacking a functional NSP1 gene showing that DHFR-C-NSP1 fulfils the same basic function as compared to the endogenous NSP1 protein. These data also show that the NSP1 protein is composed of separate functional moieties: a carboxy-terminal domain that is sufficient to mediate the association with the nuclear periphery and an amino-terminal and middle repetitive domain with an as yet unknown function. It is suggested that heptad repeats found in the NSP1 carboxy-terminal domain, which are similar to those found in intermediate filament proteins, are crucial for mediating the association with the nuclear pores.  相似文献   

3.
The small RNA segment (S segment) of Uukuniemi (UUK) virus encodes two proteins, the nucleocapsid protein (N) and a nonstructural protein (NSs), by an ambisense strategy. The function of NSs has not been elucidated for any of the bunyaviruses expressing this protein. We have now expressed the N and NSs proteins in Sf9 insect cells by using the baculovirus expression system. High yields of both proteins were obtained. A monospecific antibody was raised against gel-purified NSs and used to study the synthesis and localization of the protein in UUK virus-infected BHK21 cells. While the N protein was detected as early as 4 h postinfection (p.i.), NSs was identified only after 8 h p.i. Both proteins were still synthesized at high levels at 24 h p.i. The half-life of NSs was about 1.5 h, while that of the N protein was several hours. Sucrose gradient fractionation of [35S]methionine-labeled detergent-solubilized extracts of infected BHK21 cells indicated that NSs was firmly associated with the 40S ribosomal subunit. This association took place shortly after translation and was partially resistant to 1 M NaCl. NSs expressed by using the T7 vaccinia virus expression system, as well as in vitro-translated NSs, was also associated with the 40S subunit. In contrast, in vitro-translated N protein was found on top of the gradient. Immunolocalization of NSs, in UUK virus-infected cells, by using an affinity-purified antibody showed a granular cytoplasmic staining. A very similar pattern was seen for cells expressing NSs from a cDNA copy by using a vaccinia virus expression system. No staining was observed in the nuclei in either case. Furthermore, NSs was found neither in virions nor in nucleocapsids isolated from infected cells. In vivo labeling with 32Pi indicated that NSs is not phosphorylated. The possible function of NSs is discussed in light of these results.  相似文献   

4.
Because Pr65gag is in part located in the nucleus and contains a putative bipartite nuclear targeting signal, we investigated the cellular location and structure of P55gag, a gag-encoded polyprotein known to lack the nucleocapsid (NC) protein NCp10. P55gag was found to be restricted to the cytoplasm of Moloney murine leukemia virus-infected cells. Of interest, P55gag was produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene. Surprisingly, our structural and immunological studies indicated that P55gag also lacks carboxy-terminal residues of CAp30. During the course of studying P55gag, we detected a new viral protein within purified virus particles that contained NCp10 tryptic peptide sequences and a CAp30 tryptic peptide lacking in P55gag. This viral protein, which we have named nucleocapsid-related protein (NCRP), also contained antigenic epitopes present in CAp30 and NCp10. P55gag- and NCRP-like proteins were also observed in AKV murine leukemia virus and feline leukemia virus systems. The precise site of cleavage within Pr65gag that produces P55gag and NCRP is unknown but lies upstream of the CAp30-NCp10 junction within the carboxy-terminal domain of CAp30. The existence of a form of NCp10 containing carboxy-terminal CAp30 sequences raises interesting possibilities about its functional role in genomic RNA packaging and/or viral RNA dimerization.  相似文献   

5.
6.
NSP1 is an essential nuclear pore protein in yeast. We observed that anti-NSP1 antibodies label mammalian nuclear pore complexes and recognize nucleoporin p62. Also peptide antibodies raised against the NSP1 carboxy-terminal end cross-react with p62, a conserved component of the nuclear pore complex in higher eukaryotes. To further analyze the structural and functional similarity between NSP1 and mammalian nucleoporins, we cloned and sequenced nucleoporin p62 from a HeLa cDNA library. Human p62 consists of a carboxy-terminal domain homologous to the essential yeast NSP1 carboxy-terminal domain and an amino-terminal half resembling the repetitive middle domain of NSP1. The full-length p62 and a fusion protein consisting of cytosolic mouse dihydrofolate reductase (DHFR) and the p62 carboxy-terminal domain were expressed in transfected HeLa cells. Only overexpressed full-length p62, but not the DHFR-C-p62 fusion protein, binds wheat germ agglutinin (WGA). This suggests that modification by N-acetylglucosamine is mainly restricted to the repetitive amino-terminal half of p62 and implies a role of this type of repetitive sequences in nuclear transport. In the transfected HeLa cells, the DHFR-C-p62 fusion protein forms patchy aggregates that accumulate at the nuclear periphery but are also scattered through the cytoplasm. It is suggested that nucleoporin p62 may be targeted and anchored to the pore complex via its carboxy-terminal domain which reveals a hydrophobic heptad repeat organization similar to that found in lamins and other intermediate filament proteins.  相似文献   

7.
Yoo D  Wootton SK  Li G  Song C  Rowland RR 《Journal of virology》2003,77(22):12173-12183
Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in the cytoplasm of infected cells, but its nucleocapsid (N) protein localizes specifically to the nucleus and nucleolus. The mechanism of nuclear translocation and whether N associates with particular nucleolar components are unknown. In the present study, we show by confocal microscopy that the PRRSV N protein colocalizes with the small nucleolar RNA (snoRNA)-associated protein fibrillarin. Direct and specific interaction of N with fibrillarin was demonstrated in vivo by the mammalian two-hybrid assay in cells cotransfected with the N and fibrillarin genes and in vitro by the glutathione S-transferase pull-down assay using the expressed fibrillarin protein. Using a series of deletion mutants, the interactive domain of N with fibrillarin was mapped to a region of amino acids 30 to 37. For fibrillarin, the first 80 amino acids, which contain the glycine-arginine-rich region (the GAR domain), was determined to be the domain interactive with N. The N protein was able to bind to the full-length genomic RNA of PRRSV, and the RNA binding domain was identified as the region overlapping with the nuclear localization signal situated at positions 41 to 47. These results suggest that the N protein nuclear transport may be controlled by the binding of RNA to N. The PRRSV N protein was also able to bind to both 28S and 18S ribosomal RNAs. The protein-protein interaction between N and fibrillarin was RNA dependent but independent of N protein phosphorylation. Taken together, our studies demonstrate a specific interaction of the PRRSV nucleocapsid protein with the host cell protein fibrillarin in the nucleolus, and they imply a potential linkage of viral strategies for the modulation of host cell functions, possibly through rRNA precursor processing and ribosome biogenesis.  相似文献   

8.
Hurst KR  Kuo L  Koetzner CA  Ye R  Hsue B  Masters PS 《Journal of virology》2005,79(21):13285-13297
The two major constituents of coronavirus virions are the membrane (M) and nucleocapsid (N) proteins. The M protein is anchored in the viral envelope by three transmembrane segments flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. The M endodomain interacts with the viral nucleocapsid, which consists of the positive-strand RNA genome helically encapsidated by N protein monomers. In previous work with the coronavirus mouse hepatitis virus (MHV), a highly defective M protein mutant, MDelta2, was constructed. This mutant contained a 2-amino-acid carboxy-terminal truncation of the M protein. Analysis of second-site revertants of MDelta2 revealed mutations in the carboxy-terminal region of the N protein that compensated for the defect in the M protein. To seek further genetic evidence corroborating this interaction, we generated a comprehensive set of clustered charged-to-alanine mutants in the carboxy-terminal domain 3 of N protein. One of these mutants, CCA4, had a highly defective phenotype similar to that of MDelta2. Transfer of the CCA4 mutation into a partially diploid MHV genome showed that CCA4 was a loss-of-function mutation rather than a dominant-negative mutation. Analysis of multiple second-site revertants of CCA4 revealed mutations in both the M protein and the N protein that could compensate for the original lesion in N. These data more precisely define the region of the N protein that interacts with the M protein. Further, we found that fusion of domain 3 of the N protein to the carboxy terminus of a heterologous protein caused it to be incorporated into MHV virions.  相似文献   

9.
10.
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.  相似文献   

11.
DE x DH proteins are believed to modulate the structures of RNAs and ribonucleoprotein complexes by disrupting RNA helices and RNA-protein interactions. All DE x DH proteins contain a two-domain catalytic core that enables their RNA-dependent ATPase and RNA helicase activities. The catalytic core may be flanked by ancillary domains that are proposed to confer substrate specificity and facilitate the unique functions of individual proteins. The Escherichia coli DE x DH protein DbpA and its Bacillus subtilis ortholog YxiN have similar 75aa carboxy-terminal domains, and both proteins are specifically targeted to 23S rRNA. Here we demonstrate that the carboxy-terminal domain of YxiN is sufficient to confer RNA specificity by characterizing a chimera in which this domain is appended to the core domains of E.coli SrmB, a DE x DH protein with no apparent substrate specificity. Both the RNA-dependent ATPase and RNA helicase activities of the chimera are specifically activated by 23S rRNA and abolished by sequence changes within hairpin 92, a critical recognition element for Y x iN. These data support a model in which the carboxy-terminal domain binds hairpin 92 to target the protein to 23S rRNA.  相似文献   

12.
Recently, Tomato spotted wilt virus (TSWV) nonstructural protein NSs has been identified unambiguously as an avirulence (Avr) determinant for Tomato spotted wilt (Tsw)‐based resistance. The observation that NSs from two natural resistance‐breaking isolates had lost RNA silencing suppressor (RSS) activity and Avr suggested a link between the two functions. To test this, a large set of NSs mutants was generated by alanine substitutions in NSs from resistance‐inducing wild‐type strains (NSsRI), amino acid reversions in NSs from resistance‐breaking strains (NSsRB), domain deletions and swapping. Testing these mutants for their ability to suppress green fluorescent protein (GFP) silencing and to trigger a Tsw‐mediated hypersensitive response (HR) revealed that the two functions can be separated. Changes in the N‐terminal domain were found to be detrimental for both activities and indicated the importance of this domain, additionally supported by domain swapping between NSsRI and NSsRB. Swapping domains between the closely related Tospovirus Groundnut ringspot virus (GRSV) NSs and TSWV NSsRI showed that Avr functionality could not simply be transferred between species. Although deletion of the C‐terminal domain rendered NSs completely dysfunctional, only a few single‐amino‐acid mutations in the C‐terminus affected both functions. Mutation of a GW/WG motif (position 17/18) rendered NSs completely dysfunctional for RSS and Avr activity, and indicated a putative interaction between NSs and Argonaute 1 (AGO1), and its importance in TSWV virulence and viral counter defence against RNA interference.  相似文献   

13.
The aglZ gene of Myxococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait. MglA is a 22-kDa cytoplasmic GTPase required for both adventurous and social gliding motility and sporulation. Genetic studies showed that aglZ is part of the A motility system, because disruption or deletion of aglZ abolished movement of isolated cells and aglZ sglK double mutants were nonmotile. The aglZ gene encodes a 153-kDa protein that interacts with purified MglA in vitro. The N terminus of AglZ shows similarity to the receiver domain of two-component response regulator proteins, while the C terminus contains heptad repeats characteristic of coiled-coil proteins, such as myosin. Consistent with this motif, expression of AglZ in Escherichia coli resulted in production of striated lattice structures. Similar to the myosin heavy chain, the purified C-terminal coiled-coil domain of AglZ forms filament structures in vitro.  相似文献   

14.
We have characterized the interaction and nuclear localization of the nucleocapsid (N) protein and phosphoprotein (P) of sonchus yellow net nucleorhabdovirus. Expression studies with plant and yeast cells revealed that both N and P are capable of independent nuclear import. Site-specific mutagenesis and deletion analyses demonstrated that N contains a carboxy-terminal bipartite nuclear localization signal (NLS) located between amino acids 465 and 481 and that P contains a karyophillic region between amino acids 40 and 124. The N NLS was fully capable of functioning outside of the context of the N protein and was able to direct the nuclear import of a synthetic protein fusion consisting of green fluorescent protein fused to glutathione S-transferase (GST). Expression and mapping studies suggested that the karyophillic domain in P is located within the N-binding domain. Coexpression of N and P drastically affected their localization patterns relative to those of individually expressed proteins and resulted in a shift of both proteins to a subnuclear region. Yeast two-hybrid and GST pulldown experiments verified the N-P and P-P interactions, and deletion analyses have identified the N and P interacting domains. N NLS mutants were not transported to the nucleus by import-competent P, presumably because N binding masks the P NLS. Taken together, our results support a model for independent entry of N and P into the nucleus followed by associations that mediate subnuclear localization.  相似文献   

15.
Localization of RNA replication to intracellular membranes is a universal feature of positive-strand RNA viruses. Replication complexes of flock house virus (FHV), the best-studied alphanodavirus, are located on outer mitochondrial membranes in infected Drosophila melanogaster cells and are associated with the formation of membrane-bound spherules, similar to structures found for many other positive-strand RNA viruses. To further study FHV replication complex formation, we investigated the subcellular localization, membrane association, and membrane topology of protein A, the FHV RNA-dependent RNA polymerase, in the yeast Saccharomyces cerevisiae, a host able to support full FHV RNA replication and virion formation. Confocal immunofluorescence revealed that protein A localized to mitochondria in yeast, as in Drosophila cells, and that this mitochondrial localization was independent of viral RNA synthesis. Nycodenz gradient flotation and dissociation assays showed that protein A behaved as an integral membrane protein, a finding consistent with a predicted N-proximal transmembrane domain. Protease digestion and selective permeabilization after differential epitope tagging demonstrated that protein A was inserted into the outer mitochondrial membrane with the N terminus in the inner membrane space or matrix and that the C terminus was exposed to the cytoplasm. Flotation and immunofluorescence studies with deletion mutants indicated that the N-proximal region of protein A was important for both membrane association and mitochondrial localization. Gain-of-function studies with green fluorescent protein fusions demonstrated that the N-terminal 46 amino acids of protein A were sufficient for mitochondrial localization and membrane insertion. We conclude that protein A targets and anchors FHV RNA replication complexes to outer mitochondrial membranes, in part through an N-proximal mitochondrial localization signal and transmembrane domain.  相似文献   

16.
17.
18.
The protein encoded by varicella-zoster virus open reading frame 63 and carboxy-terminal deletions of the same were expressed either as fusion proteins at the carboxy terminus of the maltose-binding protein in Escherichia coli or independently in transfected mammalian cells. The truncations contained amino acids 1 to 142 (63 delta N) or 1 to 210 (63 delta K) of the complete 278-amino-acid primary sequence. Recombinant casein kinase II phosphorylated the 63F and 63 delta KF fusion proteins in vitro but did not phosphorylate the 63 delta NF fusion protein, implying that phosphorylation occurred between amino acids 142 and 210. Immunoprecipitation of 35S- or 32P-labelled extracts of cells transfected with plasmids expressing 63, 63 delta N, or 63 delta K also indicated that in situ phosphorylation most likely occurred between amino acids 142 and 210. These combined results suggest that casein kinase II plays a significant role in the phosphorylation of the varicella-zoster virus 63 protein. Indirect immunofluorescence of transfected cells indicated nuclear localization of the 63 protein and cytoplasmic localization of 63 delta K and 63 delta N, implying a requirement for sequences between amino acids 210 and 278 for efficient nuclear localization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号