首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of these studies was to investigate the pharmacology of E-series and selected prostaglandins of other classes on adenylyl cyclase activity in Chinese hamster ovary (CHO) cells expressing an endogenous prostanoid receptor and to compare these responses with those from immortalized human non-pigmented ciliary epithelial (NPE) cells containing the EP2 receptor. 11-deoxy-PGE2 was the most potent of the 16 prostanoid agonists tested for stimulating cAMP formation with a potency (EC50) value of 26 +/- 6 nM in the CHO cells. The endogenous ligand, PGE2, exhibited potencies of 40 +/- 7 nM (n = 24) in the CHO cells and 67 +/- 9 nM (n = 46) in the NPE cells. The EP2 receptor agonist, butaprost, produced an EC50 value of 212 +/- 58 nM (n = 4) in the NPE cells while being inactive (EC50 > 10,000 nM, n = 6) in the CHO cells. The EP4 receptor selective antagonists, AH22921 and AH23848B, at a concentration of 30 microM, caused a 2.2 +/- 0.5 (n = 4) and 8.2 +/- 2.7 (n = 4) fold rightward shift in the PGE2 concentration-response curves in the CHO cells, yielding apparent pKb values of 4.6 +/- 0.6 and 5.3 +/- 0.2 (n = 4), respectively. AH22921 and AH23848B were non-competitive antagonists at the CHO cell EP4 receptor, but did not shift the PGE2 concentration-response curves in the NPE cells containing the EP2 receptor. These studies have characterized the functional prostaglandin receptors in CHO cells pharmacologically and shown them to be consistent with the EP4 subtype.  相似文献   

2.
The new classes of diphenylcarbamate derivatives with a tetrahydronaphthalene skeleton as highly potent and selective IP agonists have been discovered. The optimized diphenylcarbamate type compound FK-788: (R)-4 exhibited potent antiaggregative potency with an IC50 of 18 nM and high binding affinity for the human recombinant IP receptor with K(i) values of 20 nM and selectivity for human IP over all other members of the human prostanoid receptor family. Compound (R)-4 was shown to exhibit good pharmacokinetic properties in rats and dogs, and also good bioavailability in healthy volunteers.  相似文献   

3.
At different concentrations, prostaglandin E2 (PGE2) can either stimulate or inhibit cAMP formation in freshly isolated rabbit cortical collecting tubule (RCCT) cells, but in cultured RCCT cells PGE2 can only stimulate cAMP synthesis (Sonnenburg, W. K., and Smith W. L. (1989) J. Biol. Chem. 263, 6155-6160). Here, we report characteristics of [3H]PGE2 binding to membrane receptor preparations from both freshly isolated and cultured RCCT cells. [3H]PGE2 binding to membranes from freshly isolated RCCT cells was saturable and partially reversible. Equilibrium binding analyses indicated that in the absence of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) there is a single class of PGE2 binding sites (KD = 4.2 +/- 0.4 nM; Bmax = 583 +/- 28 fmol/mg); in the presence of 100 microM GTP gamma S, there is also only one class of binding sites but with a somewhat lower KD = 1.2 +/- 0.5 nM (Bmax = 370 +/- 40 fmol/mg). This stimulatory effect of GTP gamma S was blocked by pretreatment of the freshly isolated RCCT cells with pertussis toxin. The relative affinities of prostanoids for the [3H]PGE2-binding site were determined to be 17,18,19,20-tetranor-16-phenoxy-PGE2-methylsulfonylamide (sulprostone) approximately PGE2 approximately PGE1 approximately 16,16-dimethyl-PGE2 greater than carbacyclin approximately PGF2 alpha greater than PGD2. This is the order of potency with which prostaglandins inhibit arginine vasopressin-induced cAMP formation in fresh RCCT cells. Interestingly, [3H]PGE2 binding to membranes from cultured cells, which, unlike fresh cells, fail to show an inhibitory response to PGE2, was only 10-20% of that observed with membranes from fresh cells; moreover, binding of [3H]PGE2 to membranes from cultured cells was neither stimulated by GTP gamma S nor inhibited by sulprostone. The prostanoid binding specificities and the unusual pertussis toxin-sensitive, stimulatory effect of GTP gamma S on binding of [3H]PGE2 to membranes from freshly isolated RCCT cells are characteristics shared by a Gi-linked PGE receptor from renal medulla (Watanabe, T., Umegaki, K., and Smith, W. L. (1986) J. Biol. Chem. 261, 14340-14349). Our results suggest that the [3H]PGE2 binding site of freshly isolated RCCT cells is the PGE receptor which is coupled to a Gi to attenuate arginine vasopressin-induced cAMP synthesis in the renal collecting tubule.  相似文献   

4.
Preincubation of murine macrophage-like P388D1 cells with physiological amounts of insulin resulted in an increase in prostaglandin E2 binding to these cells, by approximately 2-fold, when compared to untreated cells. Scatchard analysis of the binding of PGE2 to insulin-treated cells indicated that the enhanced binding was due to an increase in receptor number (from 0.30 +/- 0.02 to 0.63 +/- 0.03 fmol/10(6) cells for the high affinity receptor binding sites, and from 2.4 +/- 0.31 to 5.0 +/- 0.41 fmol/10(6) cells for the low affinity receptor binding sites) rather than to an increase in the affinity of the binding sites. The insulin-stimulation of PGE2 binding appeared to be associated with a lowering of the cAMP level in these cells; treatment of cells with insulin lowered the cAMP level by increasing the cAMP phosphodiesterase activity of both the membrane and cytosolic fractions. However, enhanced PGE2 binding to the cells resulted in an increase in cAMP level in the cells. This increase in cAMP level may help to enhance the immunosuppressive action of this prostanoid, as PGE2 is known to suppress many steps in the immune response, including interleukin-1 expression, by raising cAMP levels via activation of receptor-linked adenylate cyclase. Our data suggest that insulin at physiological concentrations may enhance the immunosuppressive action of PGE2.  相似文献   

5.
6.
A neuroblastoma X Chinese hamster embryonic brain explant hybrid cell line (NCB-20) expressed 5-hydroxytryptamine (5-HT1) receptors, linked to adenylate cyclase, which closely resembled 5-HT1 receptors previously characterized in central nervous tissue. However, the affinity of the receptors for 5-HT was only 150 nM compared to 5 nM in membranes prepared from cerebral cortex. The elevation of cyclic AMP levels in NCB-20 cells produced by 5-HT was found additive to that produced by cholera toxin but synergistic with that produced by either prostaglandin E1 (PGE1) or forskolin, suggesting that these latter two agents elevate cyclic AMP levels by a different mechanism than 5-HT. The elevation of cyclic AMP levels by either 5-HT or PGE1 was reversed by [D-Ala2,D-Leu5]enkephalin (DADLE), morphine, clonidine, and 3,4-dihydroxyphenylethylamine (dopamine) on a short (30 min) time scale. However, continued exposure to DADLE resulted in loss of the initial inhibitory effects of DADLE after 6 h and return of cyclic AMP levels to that seen with either 5-HT or PGE1 alone. When the DADLE exposure time was increased to 48 h, 5-HT produced a further twofold increase in cyclic AMP levels, but there was no increase in the responsiveness of the cells to PGE1 unless naloxone was added 1 h prior to treatment with PGE1. Scatchard analysis showed that the increased potency of 5-HT resulted from an increase in receptor affinity for 5-HT (from a KD of 150 +/- 20 nM to one of 20 +/- 7 nM), with a reduction in the number of apparent binding sites. The 5-HT supersensitivity observed in NCB-20 cells may be a good model for neurotransmitter interactions that produce desensitization or facilitation in the intact nervous system.  相似文献   

7.
Recent data suggest that prostaglandins (PGs) are involved in the regulation of basophil activation. The aim of this study was to characterize the basophil PG-binding sites by means of radioreceptor assays using 3H-labeled PGs. Scatchard analysis for pure (greater than 95%) chronic myeloid leukemia (CML) basophils revealed two classes of PGE1-binding sites differing in their affinity for the natural ligand (Bmax1 = 217 +/- 65 fmol/10(8) cells; Kd1 = 0.5 +/- 0.2 nM; Bmax2 = 2462 +/- 381 fmol/10(8) cells; Kd2 = 47 +/- 20 nM; IC50 = PGE1 less than PGI2 less than PGD2 less than PGE2 less than PGF2 alpha) as well as two classes of PGI2 (iloprost)-binding sites (Bmax1 = 324 +/- 145 fmol/10(8) cells; Kd1 = 0.5 +/- 0.3 nM; Bmax2 = 2541 +/- 381; Kd2 = 27 +/- 6 nM; IC50 = PGI2 less than PGE1 less than PGD2 less than PGE2 less than PGF2 alpha. In addition, CML basophils exhibited a single class of PGD2-binding sites (Bmax = 378 +/- 98 fmol/10(8) cells; Kd = 13 +/- 4 nM; IC50: PGD2 less than PGI2 less than PGE1 less than PGE2 less than PGF2 alpha). In contrast, we were unable to detect specific saturable PGE2-binding sites. Primary and immortalized (KU812) CML basophils revealed an identical pattern of PG receptor expression. Basophils (KU812) expressed significantly (p less than 0.001) lower number of PGE1 (PGI2)-binding sites (Bmax1: 9% (20%) of control; Bmax2: 36% (50%) of control) when cultured with recombinant interleukin 3 (rhIL-3), a basophil-activating cytokine, whereas rhIL-2 had no effect on PG receptor expression. Functional significance of binding of PGs to basophils was provided by the demonstration of a dose-dependent increase in cellular cAMP upon agonist activation, with PGE1 (ED50 = 1.7 +/- 1.1 nM) and PGI2 (ED50 = 2.8 +/- 2.3 nM) being the most potent compounds. These findings suggest that human basophils express specific receptors for PGE1, PGI2 as well as for PGD2.  相似文献   

8.
The discovery and evaluation of 5-(4-phenylbenzyl)oxazole-4-carboxamides as prostacyclin (IP) receptor antagonists is described. Analogs disclosed showed high affinity for the IP receptor in human platelet membranes with IC50 values of 0.05-0.50 microM, demonstrated functional antagonism by inhibiting cAMP production in HEL cells with IC50 values of 0.016-0.070 microM, and exhibited significant selectivity versus other prostanoid receptors.  相似文献   

9.
Wei Q  Zhou DH  Shen QX  Chen J  Chen LW  Wang TL  Pei G  Chi ZQ 《Cell research》2000,10(2):93-102
Human mu-opioid receptor (HmuOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells. The maximal binding capacity for the [3H] diprenorphine and [3H]ohmefentanyl (Ohm) were 9.1 +/- 0.7 and 6.52 +/- 0.23 nmol/g protein, respectively. The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by mu-selective agonists [D-Ala2, N-methyl-Phe4, glyol5]enkephalin (DAGO), Ohm, and morphine, but neither by delta nor by kappa selective agonist. Na+ (100 mM) and GTP (50 microM) could reduce HmuOR agonists etorphine and Ohm affinity binding to the overexpressed HmuOR. mu-selective agonists DAGO and Ohm effectively stimulated [35S]GTP-gammaS binding (EC50 = 2.7 nM and 6.9 nM) and inhibited forskolin- stimulated cAMP accumulation (IC50 = 0.9 nM and 0.3 nM). The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX). These results demonstrated that HmuOR overexpressed in Sf9 insect cells functionally coupled to endogenous G(i/o) proteins.  相似文献   

10.
Short-circuit current (I(sc)) and transepithelial conductance (Gt) were measured in guinea pig distal colonic mucosa isolated from submucosa and underlying muscle layers. Indomethacin (2 microM) and NS-398 (2 microM) were added to suppress endogenous production of prostanoids. Serosal addition of PGE2 (10 nM) stimulated negative I(sc) consistent with K secretion, and concentrations >30 nM stimulated positive I(sc) consistent with Cl secretion. PGE2 also stimulated Gt at low and high concentrations. Dose responses to prostanoids specific for EP prostanoid receptors were consistent with stimulating K secretion through EP2 receptors, based on a rank order potency (from EC50 values) of PGE2 (1.9 nM) > 11-deoxy-PGE1 (8.3 nM) > 19(R)-hydroxy-PGE2 (13.9 nM) > butaprost (67 nM) > 17-phenyl-trinor-PGE2 (307 nM) > sulprostone (>10 microM). An isoprostane, 8-iso-PGE2, stimulated K secretion with an EC50 of 33 nM. Cl secretory response was stimulated by PGD2 and BW-245C, a DP prostanoid receptor-specific agonist: BW-245C (15 nM) > PGD2 (30 nM) > PGE2 (203 nM). Agonists specific for FP, IP, and TP prostanoid receptors were ineffective in stimulating I(sc) and Gt at concentrations <1 microM. These results indicate that PGE2 stimulated electrogenic K secretion through activation of EP2 receptors and electrogenic KCl secretion through activation of DP receptors. Thus stimulation of Cl secretion in vivo would occur either via physiological concentrations of PGD2 (<100 nM) or pathophysiological concentrations of PGE2 (>100 nM) that could occur during inflammatory conditions.  相似文献   

11.
Aiming to develop a functional assay for the human NPY Y5 receptor based on adenylyl cyclase activity, HEC-1B cells, in which cAMP synthesis can be efficiently stimulated with forskolin, were selected for the transfection with the pcDNA3-Y5-FLAG and the pcDEF3-Y5 vectors. After optimization of the transfection procedure, the binding of [3H]propionyl-NPY to transiently and stably expressed Y5 receptors was determined. The affinities of NPY, NPY derivatives, and rPP (pNPY > or = p(Leu31Pro34)NPY = p(2-36)NPY > or = p(D-Trp32)NPY > p(13-36)NPY > rPP) were in accordance with the NPY Y5 receptor subtype. For [3H]propionyl-pNPY approximately 1.7 x 10(5) and 1 x 10(6) binding sites per transiently and stably transfected cell, respectively, were determined. The KD values were 2.4 +/- 0.4 and 1.7 +/-0.2 nM, respectively. Due to the high expression of the receptor protein, both stably and transiently transfected cells can be conveniently used in routine radioligand binding studies. By contrast, functional assays were only feasible with HEC-1B cells stably expressing the Y5 receptor. In these cells, 10 nM pNPY inhibited the forskolin-stimulated cAMP synthesis by 75%. This effect was partially antagonized by the Y5 antagonist N-?trans-[4-(2-naphthylmethylamino)-methyl]cyclohexylmethyl) naphthalene-2-sulfonamide. Although the genetic variability of cancer cells is in principle incompatible with a stable phenotype, both ligand binding characteristics and functionality of the Y5 receptor remained unchanged for more than 30 passages.  相似文献   

12.
Purified bovine myometrial plasma membranes were used to characterize prostaglandin (PG) E2 binding. Two binding sites were found: a high-affinity site with a dissociation constant (KD) of 0.27 +/- 0.08 nM and maximum binding (Bmax) of 102.46 +/- 8.6 fmol/mg membrane protein, and a lower affinity site with a KD = 6.13 +/- 0.50 nM and Bmax = 467.93 +/- 51.63 fmol/mg membrane protein. Membrane characterization demonstrated that [3H]PGE2 binding was localized in the plasma membrane. In binding competition experiments, unlabelled PGE1 displaced [3H]PGE2 from its receptor at the same concentrations as did PGE2. Neither PGF2 alpha nor PGD2 effectively competed for [3H]PGE2 binding. Adenylyl cyclase activity was inhibited at concentrations of PGE2 that occupy the high-affinity receptor. These data demonstrate that two receptor sites, or states of binding within a single receptor, are present for PGE2 in purified myometrial membranes. PGE2 inhibition of adenylyl cyclase activity support the view that cAMP has a physiological role in the regulation of myometrial contractility by PGE2.  相似文献   

13.
Clonal neurohybridoma NCB-20 cells expressed muscarinic cholinergic receptors coupled to phospholipase C. Addition of carbachol in the presence of Li+ to cells prelabeled with 3H-inositol increased 3H-inositol-l-phosphate (3H-IP1) accumulation by more than 4-fold with an EC50 of about 50 microM. This carbachol-induced response was blocked by atropine and pirenzepine with a Ki of 0.5 and 25 nM, respectively. The EC50 of Li+ for the carbachol-induced phosphoinositide turnover was 17 +/- 1.2 mM compared with a value of 1.8 +/- 0.2 mM in brain slices, suggesting the presence of an unusual type of inositol-l-phosphatase in NCB-20 cells. Carbachol-induced IP1 accumulation in these cells was potently and noncompetitively inhibited by the biologically active phorbol esters, phorbol dibutyrate (PDB) and phorbol myristate diacetate (PMA), while the biologically inactive phorbol, 4 beta-phorbol, failed to affect this phosphoinositide breakdown. The basal IP1 accumulation was also significantly attenuated by PDB and PMA but not by 4 beta-phorbol.  相似文献   

14.
A metabolism study of FR181157 (1) led to the discovery of new oxazole derivatives as active metabolites. The metabolite 6 with an epoxy ring exhibited high anti-aggregative potency with an IC(50) of 5.8 nM and potent binding affinity for the human recombinant IP receptor with a K(i) value of 6.1 nM and selectivity for human IP receptor over all other members of the human prostanoid receptor family.  相似文献   

15.
In mouse neuroblastoma x Chinese hamster brain clonal cell line NCB-20, bradykinin (BK) receptor stimulation causes phosphoinositide hydrolysis and release of inositol phosphates. Maximum stimulation (4-fold) of [2-3H]inositol trisphosphate (IP3) release in the absence of Li+ from NCB-20's prelabelled for 20-24 hours with [2-3H]myo-inositol (15 microCi/confluent 60mm dish) occurred after 5-10 seconds of bradykinin exposure, with an EC50 of approximately 100nM. Inositol bisphosphate (IP2) and inositol monophosphate (IP1) also showed increases (2.9-fold and 1.5 fold, respectively), with peaks at 15-20 seconds and 50 seconds, respectively. Under these same conditions, D-Ala2-D-Leu5 enkephalin (DADLE) (10 microM), an opiate agonist with 2nM affinity, gave no stimulation of IP3 release. Furthermore, it did not block BK-initiated release, both when applied simultaneously with BK and when cells were preincubated with DADLE for 100 minutes to lower cyclic AMP levels. These results show that pain-inducing BK has a major acute stimulatory effect on receptor-phospholipase C-coupled IP3 release, the opioid peptide DADLE has no such effect and, DADLE does not block the IP3 release induced by BK.  相似文献   

16.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) interact with VPAC(2) receptors in rabbit and guinea pig (GP) gastric muscle but with functionally distinct VIP and PACAP receptors in GP tenia coli. This study examined whether selectivity for VIP was determined by two residues (40, 41) in the extracellular domain that differ in the VIP receptors of GP gastric and tenial muscle. A mutant rat VPAC(2) receptor (L40F, L41F), and two chimeric receptors in which the NH(2)-terminal domain of rat VPAC(2) receptor was replaced with that of GP gastric (chimeric-G) or tenia coli (chimeric-T) VIP receptors, were constructed and expressed in COS-1 cells. VIP and PACAP bound with equal affinity to wild-type and mutant rat VPAC(2) receptors and to chimeric-G receptor (IC(50): VIP 0.3 +/- 0.1 to 1.5 +/- 0.4 nM, PACAP 0.4 +/- 0.1 to 2.5 +/- 0.1 nM) and stimulated cAMP with equal potency (EC(50): VIP 13 +/- 5 to 48 +/- 8 nM, PACAP 8 +/- 3 to 31 +/- 14 nM). VIP bound with high affinity also to chimeric-T receptor (IC(50): 0.5 +/- 0.1 nM) and stimulated cAMP with high potency (EC(50): 3 +/- 1 nM). In contrast, PACAP exhibited >1,000-fold less affinity for binding or potency for stimulating cAMP. We conclude that GP tenia coli express a VIP-specific receptor and that selectivity is determined by a pair of extracellular phenylalanine residues.  相似文献   

17.
Epidermal growth factor (EGF) and its receptor have been implicated in the control of uterine cell growth and differentiation. The objectives of this study were to determine EGF binding characteristics and effects of EGF on prostaglandin (PG) production in vitro by glandular and stromal cells from porcine endometrium. Endometrial tissues were taken from 10 sows on Day 13 of pregnancy (first day of estrus = Day 0). Glandular and stromal cells were separated by enzymatic dispersion and sieve filtration and cultured for 3 days. EGF-binding assay was carried out at 20 degrees C in the presence of 0.2 nM 125I-EGF with increasing concentrations of unlabeled EGF (0-12 nM). Scatchard analyses revealed one class of high-affinity binding sites in each cell type with apparent equilibrium dissociation constants (n = 6) of 2.96 +/- 0.60 nM and 2.48 +/- 0.50 nM for stromal and glandular cells, respectively. The apparent binding capacities were 199.3 +/- 34.8 fmol/10(6) cells for stromal cells and 40.7 +/- 6.5 fmol/10(6) cells for glandular cells. Effects of EGF on PG production were determined by including 1, 5, 10, or 20 ng/ml EGF in the medium for the final 24 h of the 72-h culture. EGF increased PGE (p less than 0.01) and PGF2 alpha (p less than 0.05) secretion by stromal cells. The highest concentration (20 ng/ml) of EGF increased secretion of PGE and PGF2 alpha by 133% and 64%, respectively, over controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Prostaglandins (PGs) have been shown to play various roles in adipogenesis. In this study, we investigated on which PGE receptor subtypes are involved in the inhibition of 3T3-L1 preadipocyte differentiation. The triglyceride content of cells, used as an index of differentiation, was decreased when PGE(2), the FP-agonist fluprostenol or dibutyryl cAMP, was exogenously added to differentiation cocktails. 3T3-L1 preadipocyte cells express mRNAs for the prostanoid EP4, FP, and IP receptors. PGE(2) and the EP4 agonist AE1-329 increased cAMP levels in preadipocytes in a dose-dependent manner. AE1-329 suppressed the expression induction of differentiation marker genes such as resistin and peroxisome proliferator-activated receptor-gamma. The inhibitory effect of PGE(2) but not that of fluprostenol was reversed by the addition of the EP4 antagonist AE3-208. AE3-208 mimicked the differentiation-promoting effects of indomethacin. These results suggest that the EP4 receptor mediates the suppressive action of PGE(2) in 3T3-L1 adipocyte differentiation.  相似文献   

19.
Prostaglandin E2 (PGE(2)), a major product of cyclooxygenase, exerts its functions by binding to four G protein-coupled receptors (EP1-4) and has been implicated in modulating angiogenesis. The present study examined the role of the EP4 receptor in regulating endothelial cell proliferation, migration, and tubulogenesis. Primary pulmonary microvascular endothelial cells were isolated from EP4(flox/flox) mice and were rendered null for the EP4 receptor with adenoCre virus. Whereas treatment with PGE(2) or the EP4 selective agonists PGE(1)-OH and ONO-AE1-329 induced migration, tubulogenesis, ERK activation and cAMP production in control adenovirus-transduced endothelial EP4(flox/flox) cells, no effects were seen in adenoCre-transduced EP4(flox/flox) cells. The EP4 agonist-induced endothelial cell migration was inhibited by ERK, but not PKA inhibitors, defining a functional link between PGE(2)-induced endothelial cell migration and EP4-mediated ERK signaling. Finally, PGE(2), as well as PGE(1)-OH and ONO-AE1-329, also promoted angiogenesis in an in vivo sponge assay providing evidence that the EP4 receptor mediates de novo vascularization in vivo.  相似文献   

20.
Antibodies to surface immunoglobulins activate inositol phospholipid hydrolysis in B-lymphocytes, but very little is known concerning their effects on cAMP levels. In other cells, products from the hydrolysis of phosphatidylinositol 4,5-bisphosphate can increase and/or potentiate cAMP accumulation. In this study we have examined whether goat anti-mouse IgM (mu-chain-specific) stimulates and/or potentiates increases in the cAMP levels of splenocytes from athymic nude mice. Goat anti-mouse IgM, by itself, stimulated a 60% increase in cAMP within 2 min. Pretreating the cell suspensions at 37 degrees C with anti-IgM produced opposite effects on the forskolin- and prostaglandin E1 (PGE1)-induced increase in cAMP. Anti-IgM (25 micrograms/ml) potentiated the rise in cAMP induced by 100 microM forskolin 76%, but it decreased the response to 50 nM PGE1 by 30%. Direct activation of protein kinase C (Ca2+/phospholipid-dependent enzyme) by 12-O-tetradecanoylphorbol 13-acetate and/or sn-1,2-dioctanoylglycerol resulted in a similar pattern of responses. A 3-min preincubation with 97 nM 12-O-tetradecanoylphorbol 13-acetate potentiated the forskolin-induced response from 1.7 +/- 0.1 to 4.3 +/- 0.6 pmol of cAMP/10(6) cells but reduced the PGE1 response from 0.98 +/- 0.06 to 0.51 +/- 0.03 pmol of cAMP/10(6) cells. Similarly, preincubating the cells for 3 min with 5 microM sn-1,2-dioctanoylglycerol increased the forskolin response from 1.7 +/- 0.1 to 5.1 +/- 0.2 pmol of cAMP/10(6) cells but reduced the response to PGE1 from 1.15 +/- 0.03 to 0.75 +/- 0.04 pmol of cAMP/10(6) cells. Thus, activation of protein kinase C by hydrolysis products of inositol phospholipids, 12-O-tetradecanoylphorbol 13-acetate, or exogenous diacylglycerols modified adenylate cyclase itself and sites upstream of adenylate cyclase such as the receptor or G proteins coupling the receptor to the cyclase. Furthermore, modification of the PGE1 response by anti-IgM provides a mechanism by which antigen can differentially regulate T- and B-cells responding to macrophage-produced prostaglandins during an immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号