首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The production of the ligninolytic enzymes by Phanerochaete chrysosporium immobilized on polyurethane foam cubes in air was investigated by adopting different sizes and amounts of the carriers, different medium C/N ratios and different glucose-feeding strategies. No lignin peroxidase (LiP) activity was observed under nitrogen limitation (C/N ratio, expressed as glucose/NH4+, 56/2.2 mM) with two sizes and three amounts of the carriers, while comparable levels of manganese peroxidase (MnP) activities were detected only in non-immersed cultures with two sizes of the carriers. A non-immersed state also stimulated LiP formation under carbon limitation (C/N ratio 28/44 mM). High peak activities of LiP, 197 and 164 U/l, were obtained in non-immersed cultures under carbon limitation at the C/N ratios of 28/44 and 56/44 mM, respectively, the occurrence of the activities coinciding with the complete consumption of glucose. A very low level of MnP was measured at the C/N ratio of 28/44 mM compared with the similar activities at 56/2.2 and 56/44 mM. An addition of 2 g glucose/l after its complete depletion improved both the production of LiP and MnP markedly in non-immersed culture at the initial C/N ratio of 28/44 mM, whereas a replenishment of 5 g/l, still enhancing the formation of MnP, inhibited the production of LiP first before the later reactivation. It is suggested that non-immersed liquid culture under carbon limitation reinforced by a suitable glucose feeding strategy is one potential way to realize high production of the ligninolytic enzymes by P. chrysosporium in air.  相似文献   

2.
The basidiomycetous fungus Nematoloma frowardii produced manganese peroxidase (MnP) as the predominant ligninolytic enzyme during solid-state fermentation (SSF) of wheat straw. The purified enzyme had a molecular mass of 50 kDa and an isoelectric point of 3.2. In addition to MnP, low levels of laccase and lignin peroxidase were detected. Synthetic 14C-ring-labelled lignin (14C-DHP) was efficiently degraded during SSF. Approximately 75% of the initial radioactivity was released as 14CO2, while only 6% was associated with the residual straw material, including the well-developed fungal biomass. On the basis of this finding we concluded that at least partial extracellular mineralization of lignin may have occurred. This conclusion was supported by the fact that we detected high levels of organic acids in the fermented straw (the maximum concentrations in the water phases of the straw cultures were 45 mM malate, 3.5 mM fumarate, and 10 mM oxalate), which rendered MnP effective and therefore made partial direct mineralization of lignin possible. Experiments performed in a cell-free system, which simulated the conditions in the straw cultures, revealed that MnP in fact converted part of the 14C-DHP to 14CO2 (which accounted for up to 8% of the initial radioactivity added) and 14C-labelled water-soluble products (which accounted for 43% of the initial radioactivity) in the presence of natural levels of organic acids (30 mM malate, 5 mM fumarate).  相似文献   

3.
Manganese peroxidase (MnP) purified from commercial cultures of Lentinula edodes was covalently immobilized through its carboxyl groups using an azlactone-functional copolymer derivatized with ethylenediamine and 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) as a coupling reagent. The tethered enzyme was employed in a two-stage immobilized MnP bioreactor for catalytic generation of chelated MnIII and subsequent oxidation of chlorophenols. Manganese peroxidase immobilized in the enzyme reactor (reactor 1) produced MnIII-chelate, which was pumped into another chemical reaction vessel (reactor 2) containing the organopollutant. Reactor 1-generated MnIII-chelates oxidized 2,4-dichlorophenol and 2,4, 6-trichlorophenol in reactor 2, demonstrating a two-stage enzyme and chemical system. H2O2 and oxalate chelator concentrations were varied to optimize the immobilized MnP's oxidation of MnII to MnIII. Oxidation of 1.0 mM MnII to MnIII was initially measured at 78% efficiency under optimized conditions. After 24 h of continuous operation under optimized reaction conditions, the reactor still oxidized 1.0 mM MnII to MnIII with approximately 69% efficiency, corresponding to 88% of the initial MnP activity.  相似文献   

4.
Solid-state culture of the white-rot fungus Phanerochaete chrysosporium BKMF-1767 (ATCC 24725) has been carried out, using an inert support, polystyrene foam. Suitable medium and culture conditions have been chosen to favor the secretion of manganese peroxidase (MnP). The enzyme was isolated and purified from immobilized P. chrysosporium and partially characterized. Partial protein precipitation in crude enzyme was affected using ammonium sulphate, polyethylene glycol, methanol, and ethanol methods. Fractionation of MnP was performed by DEAE-Sepharose ion exchange chromatography followed by Ultragel AcA 54 gel filtration chromatography. This purification attained 23.08% activity yield with a purification factor of 5.8. According to data on gel filtration chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of the enzyme was 45 000±1000 Da. The optimum pH and temperature of purified MnP were 4.5 and 30 °C, respectively. This enzyme was stable in the pH range 4.5–6.0, at 25 °C and also up to 35 °C at pH 4.5 for 1 h incubation period. MnP activity was inhibited by 2 mM NaN3, ascorbic acid, β-mercaptoethanol and dithreitol. The Km values of MnP for hydrogen peroxide and 2.6-dimetoxyphenol were 71.4 and 28.57 μM at pH 4.5, respectively. The effects of possible inhibitors and activators of enzyme activity were investigated.  相似文献   

5.
The effect of several laccase activity activators,such as ethanol (novel activator), veratryl alcohol, melanin production and aeration level, on the laccase production by Trametes versicolor (CBS100.29) was investigated. The microorganism was cultivated on nylon sponge, functioning as a physical support on which the mycelium was bound. The cultures with veratryl alcohol showed maximum laccase and manganese‐dependent peroxidase (MnP) activities of 238 U/l and 125 U/l, respectively. The laccase activity found is about two times higher than that attained in the control cultures. On the contrary, MnP activity did not appear to be influenced by the addition of this alcohol. Ethanol‐supplemented cultures led to maximum laccase and MnP activity levels of about 102 U/l and 101 U/l, respectively. These activities were approx. 40% lower than those achieved in the reference cultures. The decolourization of the polymeric dye Poly R‐478 by the above‐mentioned cultures was also investigated. A percentage of biological decolourization of around 90% was achieved with control and veratryl alcohol‐supplemented cultures, whereas with ethanol‐supplemented cultures a slightly lower percentage of around 85% was reached after seven days of dye incubation.  相似文献   

6.
Manganese and lignin peroxidase (MnP, LiP) activities were measured in straw extracts from cultures of Phanerochaete chrysosporium. Out of six MnP substrates, the MBTH/DMAB (3-methyl-2-benzothiazolinone hydrazone/3-(dimethylamino)benzoic acid), gave the highest MnP activity. Detection of LiP activity as veratryl alcohol oxidation was inhibited by phenols in the straw culture extracts. Appropriate levels of veratryl alcohol and peroxide (4 mM and 0.4 mM, respectively), and a restricted sample volume (not larger than 10%) were necessary to detect activity.  相似文献   

7.
分别采用海藻酸钠、明胶和壳聚糖为载体,并以戊二醛为交联剂,通过包埋-交联和吸附-交联两种耦合固定化方法制备固定化锰过氧化物酶。探讨了酶的不同固定化条件和固定化酶的部分性能。与游离酶相比,制备的3种固定化酶最适反应pH分别由7·0降低到5·0、5·0和3·0,最适反应温度分别由35℃升高到75℃、55℃和75℃。3种固定化酶的耐热性都显著提高,其中用壳聚糖制成的固定化酶在pH2·2~11的宽范围内表现出很好的酸碱耐受性。30℃连续测定6~9次酶活力,重复使用的3种固定化酶显示出良好的稳定性。将固定化酶应用在偶氮染料的脱色中,用明胶制成的固定化酶在静置和摇床条件下,以及用海藻酸钠制成的固定化酶在摇床条件下,均表现出与游离酶相近的脱色能力,并且在重复进行的摇床实验中,脱色能力未降低,反应前后的酶活力均没有损失。  相似文献   

8.
Growth parameters, ligninolytic enzyme activities and ability to degrade polycyclic aromatic hydrocarbons by the fungus Irpex lacteus were characterized and compared with those of other white rot fungi capable of rapid decolorization of poly R-478 and Remazol Brilliant Blue R dyes. I. lacteus was able to grow on mineral and complex media and efficiently colonized sterile and non-sterile soil by exploratory mycelium growing from a wheat straw inoculum. In shallow stationary cultures growing on high nitrogen mineral medium containing 45 mM ammonium as nitrogen source, the fungus produced lignin peroxidase (LIP), Mn-dependent peroxidase (MnP) and laccase simultaneously, the respective maximal activities of 70, 970 and 36 U/l being attained around day 18. Growing in nitrogen-limited medium (2.4 mM ammonium), no LIP was formed and levels of MnP and laccase decreased significantly. During growth in sterile soil, the fungus synthesized LIP and laccase but not MnP. I. lacteus efficiently removed three- and four-ringed PAHs from liquid media and artificially spiked soil. The variety of ligninolytic enzymes, robust growth, capability of soil colonization and resistance to inhibitory action of soil bacteria make I. lacteus a suitable fungal organism for use in bioremediation. Received: 30 March 2000 / Accepted: 19 May 2000  相似文献   

9.
The agaric basidiomycete Clitocybula dusenii was used for the production of the extracellular ligninolytic enzyme, manganese (Mn) peroxidase. An immobilization technique is described using cellulose and polypropylene as carrier for the fungal mycelium. High amounts of Mn peroxidase were obtained with agitated cultures of immobilized fungus (up to 3,000 U l−1) while the biomass was recovered and used for further production cycles. Purification of Mn peroxidase revealed the existence of two forms: MnP1 (molecular mass 43 kDa, pI 4.5) and MnP2 (42 kDa, pI 3.8). Received: 30 July 1999 / Received revision: 1 December 1999 / Accepted: 3 December 1999  相似文献   

10.
Manganese-dependent peroxidase (MnP) production was performed in an immobilized cell bioreactor in which Phanerochaete chrysosporium BKM-F-1767 was immobilized on polystyrene foam. The immobilized cell culture yielded significantly greater MnP activity than the conventional stationary liquid culture. Cultivation was carried out in batch mode; the effect of glucose concentration was investigated and growth kinetics parameters were found as, micromax=0.59 day(-1), Ks=0.33 g/L and Kss=14.5. Batch operation led to maximum MnP (770.82 U/L) in the culture medium containing 0.05% Tween 80, 10 g/L glucose, and 174 microM Mn2+ at 37 degrees C and pH 4.5. Enzyme productivity was obtained as 110.12 U/day/L.  相似文献   

11.
The white rot fungus Trametes trogii strain BAFC 463 produced laccase, manganese peroxidase, lignin peroxidase and cellobiose dehydrogenase, as well as two hydrogen peroxide‐producing activities: glucose oxidizing activity and glyoxal oxidase. In high‐N (40 mM N) cultures, the titres of laccase, MnP and GLOX were 27 (6.55 U/ml), 45 (403.00 mU/ml)and 8 (32,14 mU/ml) fold higher, respectively, than those measured in an N‐limited medium. This is consistent with the fact that the ligninolytic system of T. trogii is expressed constitutively. Lower activities of all the enzymes tested were recorded upon decreasing the initial pH of the medium from 6.5 to 4.5. Adding veratryl alcohol improved GLOX production, while laccase activity was stimulated by tryptophan. Supplying Tween 80 strongly reduced the activity of both MnP and GLOX, but increased laccase production. The titre of MnP was affected by the concentration of Mn in the culture medium, the highest levels were obtained with 90 μM Mn (II). LiP activity, as CDH activity, were detected only in the mediumsupplemented with sawdust. In this medium, laccase production reached a maximum of 4.75 U/ml, MnP 747.60 mU/ml and GLOX 117.11 mU/ml. LiP, MnP and GLOX activities were co‐induced, attaining their highest levels at the beginning of secondary metabolism, but while MnP, laccase, GLOX and CDH activities were also present in the primary growth phase, LiP activity appears to beidiophasic. The simultaneous presence of high ligninolytic and hydrogen peroxide producing activities in this fungus makes it an attractive microorganism for future biotechnological applications.  相似文献   

12.
In vitro bleaching of an unbleached hardwood kraft pulp was performed with partially purified manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624 without the addition of MnSO(inf4) in the presence of oxalate, malonate, or gluconate as manganese chelator. When the pulp was treated without the addition of MnSO(inf4), the pulp brightness increased by about 10 points in the presence of 2 mM oxalate, but the brightness did not significantly increase in the presence of 50 mM malonate, a good manganese chelator. Residual MnP activity decreased faster during the bleaching with MnP without MnSO(inf4) in the presence of malonate than in the presence of oxalate. Oxalate reduced MnO(inf2) which already existed in the pulp or was produced from Mn(sup2+) by oxidation with MnP and thus supplied Mn(sup2+) to the MnP system. The presence of gluconate, produced by the H(inf2)O(inf2)-generating enzyme glucose oxidase, also improved the pulp brightness without the addition of MnSO(inf4), although treatment with gluconate was inferior to that with oxalate with regard to increase of brightness. It can be concluded that bleaching of hardwood kraft pulp with MnP, using manganese originally existing in the pulp, is possible in the presence of oxalate, a good manganese chelator and reducing reagent.  相似文献   

13.
The bottleneck of the application of manganese peroxidase (MnP) on an industrial scale in pulp biobleaching or in degradation of hazardous compounds is the lack of an efficient production system. Three main problems arise for the continuous production of MnP during secondary metabolism of Phanerochaete chrysosporium: enzyme production occurs only under specific physiological conditions corresponding to C or N limitation, high O(2) tension, and adequate Mn(+2) concentration; the enzyme that is produced is destabilized by extracellular proteases; and excessive growth of the mycelium blocks effective oxygen transfer. To overcome these drawbacks, continuous production of MnP was optimized by selecting a suitable bioreactor configuration and the environmental and operating conditions affecting both enzyme production and stability. The combination between a proper feed rate and the application of a pulsation in a packed-bed bioreactor permitted the maintenance of continuous secretion of MnP while limiting mycelial growth and avoiding bed clogging. Environmental factors as an Mn(+2) concentration of 5000 muM and high oxygen tension enhanced MnP production. The hydraulics of the bioreactor corresponding to a plug flow model with partial mixing and an operating hydraulic rentention time of 24 h were optimal to achieve stable operating conditions. This policy allowed long operation periods, obtaining higher productivities than the best reported in the literature. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 130-137, 1997.  相似文献   

14.
The degradation of the nitroaromatic pollutant 2,4,6-trinitrotoluene (TNT) by the manganese-dependent peroxidase (MnP) of the white-rot fungus Phlebia radiata and the main reduction products formed were investigated. In the presence of small amounts of reduced glutathione (10 mM), a concentrated cell-free preparation of MnP from P. radiata exhibiting an activity of 36 nkat/ml (36 nmol Mn(II) oxidized per sec and per ml) transformed 10 mg/l of TNT within three days. The same preparation was capable of completely transforming the reduced derivatives of TNT. When present at 10 mg/l, the aminodinitrotoluenes were transformed in less than two days and the diaminonitrotoluenes in less than three hours. Experiments with 14C-U-ring labeled TNT and 2-amino-4,6-dinitrotoluene showed that these compounds were mineralized by 22% and 76%, respectively, within 5 days. Higher concentrations of reduced glutathione (50 mM) led to a severe inhibition of the degradation process. It is concluded that Phlebia radiata is a good candidate for the biodegradation of TNT as well as its reduction metabolites.  相似文献   

15.
Attempts have been made to use manganese peroxidase (MnP) for chlorine-free pulp biobleaching, but they have not been commercially viable because of the enzyme's low stability. We developed a new pulp biobleaching method involving mesoporous material-immobilized manganese peroxidase from Phanerochaete chrysosporium. MnP immobilized in FSM-16, a folded-sheet mesoporous material whose pore size is nearly the same as the diameter of the enzyme, had the highest thermal stability and tolerance to H(2)O(2). MnP immobilized in FSM-16 retained more than 80% of its initial activity even after 10 days of continuous reaction. We constructed a thermally discontinuous two-stage reactor system, in which the enzyme (39 degrees C) and pulp-bleaching (70 degrees C) reactions were performed separately. When the treatment of pulp with MnP by means of the two-stage reactor system and alkaline extraction was repeated seven times, the brightness of the pulp increased to about 88% within 7 h after completion of the last treatment.  相似文献   

16.
The use of ligninolytic enzymes in biotechnological applications requires a highly effective production system, with sufficient amounts of the enzymes to be applied in experimental research and herein after at large-scale operations. To reach this final goal, we propose scale-up of ligninolytic production of one of the most well-known enzymes, Manganese Peroxidase (MnP), by Bjerkandera sp. BOS55. Taking into account previous results obtained in shaken flask cultures, MnP production was attempted in stirred fermenters of 2, 10 and 50 l, with levels of activity comparable to those obtained at a lower scale. Additionally, environmental factors as agitation rate, fungus immobilisation and use of buffer were evaluated to maximise MnP production. A fed-batch strategy was proved to reactivate MnP production and to maintain MnP activity for a longer period of time. Operational parameters, such as pH and Redox potential, monitored along the fermentation were found to be useful indicators of MnP production. These variables experimented drastic changes at the MnP peak production, signalling the right moment to collect the enzyme.  相似文献   

17.
Attempts have been made to use manganese peroxidase (MnP) for chlorine-free pulp biobleaching, but they have not been commercially viable because of the enzyme's low stability. We developed a new pulp biobleaching method involving mesoporous material-immobilized manganese peroxidase from Phanerochaete chrysosporium. MnP immobilized in FSM-16, a folded-sheet mesoporous material whose pore size is nearly the same as the diameter of the enzyme, had the highest thermal stability and tolerance to H2O2. MnP immobilized in FSM-16 retained more than 80% of its initial activity even after 10 days of continuous reaction. We constructed a thermally discontinuous two-stage reactor system, in which the enzyme (39°C) and pulp-bleaching (70°C) reactions were performed separately. When the treatment of pulp with MnP by means of the two-stage reactor system and alkaline extraction was repeated seven times, the brightness of the pulp increased to about 88% within 7 h after completion of the last treatment.  相似文献   

18.
Tyrosinase was immobilized on glutaraldehyde crosslinked chitosan-clay composite beads and used for phenol removal. Immobilization yield, loading efficiency and activity of tyrosinase immobilized beads were found as 67%, 25% and 1400 U/g beads respectively. Optimum pH of the free and immobilized enzyme was found as pH 7.0. Optimum temperature of the free and immobilized enzyme was determined as 25-30 °C and 25 °C respectively. The kinetic parameters of free and immobilized tyrosinase were calculated using l-catechol as a substrate and K(m) value for free and immobilized tyrosinase were found as 0.93 mM and 1.7 mM respectively. After seven times of repeated tests, each over 150 min, the efficiency of phenol removal using same immobilized tyrosinase beads were decreased to 43%.  相似文献   

19.
Decolorization of molasses wastewater (MWW) from an ethanolic fermentation plant by Phanerochaete chrysosporium was studied. By diluting MWW properly (10%v/v) and incubating it with an appropriate concentration of the spores (2.5 × 106/ml), extensive decolorization occurred (75%) on day 5 of the incubation. The colour removal ability was found to be correlated to the activity of ligninolytic enzyme system: lignin peroxidase (LiP) activity was 185 U/l while manganese peroxidase (MnP) activity equaled 25 U/l. Effects of some selected operating variables were studied: manganese(II), veratryl alcohol (VA), glucose as a carbon source and urea and ammonium nitrate, each as a source of nitrogen. Results showed that the colour reduction and LiP activity were highest (76% and 186 U/l, respectively) either when no Mn(II) was added or added at the lowest level tested (0.16 mg/l to provide 0.3 mg/l). Activity of MnP was highest (25 U/l) when Mn(II) added to the diluted MWW at the highest level (100 ppm) while activity of LiP was lowest (7.1 U/l) at this level of added Mn(II). The colour reduction in the presence of the added VA was shown to be little less than in its absence (70 vs. 75%). When urea as an organic source of nitrogen for the fungus, was added to the MWW, the decolorizing activity of P. chrysosporium decreased significantly (15 vs. 75%) and no activities were detected for LiP and MnP. Use of ammonium nitrate as an inorganic source of nitrogen did not show such a decelerating effects, although no improvements in the metabolic behavior of the fungus (i.e., LiP and MnP activities) deaccelerating was observed. Effects of addition of glucose was also discussed.  相似文献   

20.
Li  Gao-Xiang  Linko  Yu-Yen  Linko  P. 《Biotechnology letters》1984,6(10):645-650
Summary Aspergillus niger mycelia or spores were immobilized in calcium alginate gel beads and employed for production of glucoamylase and -amylase by repeated batch process. The immobilized mycelium produced lower enzyme activities than immobilized spores germinated in a growth medium and subsequently cultured in an enzyme production medium. In repeated batch experiments, free cells could be used for only 4 4-day batches, whereas with immobilized spores at least 11 4-day batches with a gradual increase in enzyme activities in each successive batch were possible. The activity ratio of glucoamylase and -amylase produced was altered by immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号