首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.  相似文献   

2.
Sarovich DS  Pemberton JM 《Plasmid》2007,57(3):306-313
A cosmid cloning vector has been constructed that demonstrates high levels of segregational stability in Escherichia coli K12. pPSX is a 14-kilobase vector derived from the IncW plasmid pR388. pPSX is highly stable in E. coli in the absence of antibiotic selection, even while expressing the toxic indolocarbazole antitumor antibiotic violacein. The incorporation of the lambdacos sequence enables construction of cosmid libraries with inserts ranging from 24 to 36kb. The inclusion of a lacZalpha multiple cloning site (MCS) allows blue/white screening. pPSX cosmids can be extracted from the host cell with commercial plasmid extraction kits facilitating downstream analysis, sequencing and sub-cloning. pPSX can be transferred to a variety of heterologous hosts by either electroporation or mobilization from E. coli S17-1. While it is unstable in non-E. coli hosts without antibiotic selection, heterologous host strains such as Rhodobacter sphaeroides and Pseudomonas stutzeri will maintain the plasmid under antibiotic selection to allow screening of expressed inserts. pPSX provides the benefits of large insert sizes with high stability to allow cloning of chemotherapeutic gene clusters in E. coli and a range of other heterologous hosts.  相似文献   

3.
4.
Earlier, we reported that the bacteriophage lambda P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this lambda P gene-mediated lethality. In this paper, we show that under the lambda P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94 % linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from lambda P gene-mediated killing and complements E. coli dnaAts46 at 42 degrees C. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to lambda P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.  相似文献   

5.
Transduction of antibiotic resistance determinants of the plasmid pBR322 with pseudoT-even bacteriophages RB42, RB43, and RB49 was studied. It is established that antibiotic resistance determinants of plasmid pBR322 from Escherichia coli recA(+)- and recA(-)-donor strains do not differ significantly in respect to the efficiency of transduction. Amber mutants RB43-21, RB43-33, and a double amber mutant RB43am21am33 were obtained. These mutants facilitated transduction experiments in some cases. Transduction of antibiotic resistance markers of the vector plasmid pBR325 and recombinant plasmid pVT123, containing a DNA fragment with hoc segE uvsW genes of phage T4, was studied. The frequency of appearance of transductants resistant to pseudoT-even bacteriophages used in transduction was determined, and the sensitivity of resistant transductants to 32 RB bacteriophages and also to phages lambda, T2, T4, T5, T6, T7, and BF23 was estimated. The efficiency of plating pseudoT-even bacteriophages RB42 and RB43 on strain E. coli 802 himA hip carrying mutations in genes that encode subunits of the Integration Host Factor (IHF) was shown to be higher than on isogenic strain E. coli 802. The growth of pseudoT-even bacteriophages limited in vivo by modification-restriction systems of chromosomal (EcoKI, EcoBI), phage (EcoP1I), and plasmid (EcoRI, EcoR124I, and EcoR124II) localization was analyzed. It was shown that these phages were only slightly restricted by the type I modification-restriction systems EcoBI, EcoR124I, and EcoR124II. Phage RB42 was restricted by systems EcoKI, EcoP1I, and EcoRI; phage RB43, by systems EcoKI and EcoRI; and phage RB49, by the EcoRI modification-restriction system.  相似文献   

6.
A number of Solanum nigrum mutants resistant to the antibiotics spectinomycin, streptomycin and lincomycin have been isolated from regenerating leaf strips after mutagenesis with nitroso-methylurea. Selection of streptomycin- and spectinomycin-resistant mutants has been described earlier. Lincomycin-resistant mutants show resistance to higher levels of the antibiotic than used in the initial selection, and in the most resistant mutant (Ll7A1) maternal inheritance of the trait was demonstrated. The lincomycin-resistant mutant L17A1 and a streptomycin plus spectinomycin resistant double mutant (StSpl) were chosen for detailed molecular characterisation. Regions of the plastid DNA, within the genes encoding 16S and 23S rRNA and rps12 (3′) were sequenced. For spectinomycin and lincomycin resistance, base changes identical to those in similar Nicotiana mutants were identified. Streptomycin resistance is associated with an A → C change at codon 87 of rps 12 (converting a lysine into a glutamine), three codons upstream from a mutation earlier reported for Nicotiana. This site has not previously been implicated in streptomycin resistance mutations of higher plants, but has been found in Escherichia coli. The value of these mutants for studies on plastid genetics is discussed.  相似文献   

7.
8.
Two temperature-sensitive, chromosomal mutants of Escherichia coli were selected for their inability to express deoxyribonucleic acid donor activity and other activities associated with the conjugative plasmid F. These mutants were also auxotrophic for isoleucine and valine at 41 degrees C. Each mutant strain contained two altered genes: cpxA, located at 88 min on the E. coli K-12 genetic map, and cpxB, located at 41 min. Mutations in both genes were required for maximal expression of mutant phenotypes. The parent strain of mutants KN401 and KN312 already contained the cpxB mutation that is present in both mutants (cpxB1). This mutation by itself was cryptic. The cpxA mutations represent different mutant alleles since they are of independent origin. A cpxA mutation by itself significantly affected the expression of plasmid functions and growth at 41 degrees C in the absence of isoleucine and valine, but strains containing both a cpxA and cpxB mutation were more severely affected. Along with the observation that both cpxA mutations were revertable, the temperature sensitivity of cpxA cpxB+ cells suggests that both cpxA alleles contain point mutations that do not completely destroy the activity of the cpxA gene product.  相似文献   

9.
On Some Genetic Aspects of Phage λ Resistance in E. COLI K12   总被引:12,自引:0,他引:12  
J. P. Thirion  M. Hofnung 《Genetics》1972,71(2):207-216
Most mutations rendering E. coli K12 resistant to phage lambda, map in two genetic regions malA and malB.-The malB region contains a gene lamB specifically involved in the lambda receptor synthesis. Twenty-one independent lamB mutations studied by complementation belonged to a single cistron. This makes it very likely that lamB is monocistronic. Among the lamB mutants some are still sensitive to a host range mutant of phage lambda. Mutations mapping in a proximal gene essential for maltose metabolism inactivate gene lamB by polarity confirming that both genes are part of the same operon. Because cases of intracistronic complementation have been found, the active lamB product may be an oligomeric protein.-Previously all lambda resistant mutations in the malA region have been shown to map in the malT cistron. malT is believed to be a positive regulatory gene necessary for the induction of the "maltose operons" in the malA region and in the malB region of the E. coli K12 genetic map. No trans dominant malT mutation have been found. Therefore if they exist, they occur at a frequency of less than 10(-8), or strongly reduce the growth rate of the mutants.  相似文献   

10.
Mutant strains resistant to neomycin or to kanamycin sulfate were isolated from Escherichia coli K-12. Nine mutants were analyzed; all were resistant to both antibiotics (about 150 and 100 mug/ml, respectively), and were designated nek. In the mutant strains, the ribosomes are changed from those of the parental strain; for when they were used in assays for polypeptide formation directed by polyadenylic acid or polycytidylic acid, coding fidelity in presence of the drugs was increased and inhibition of synthesis by the drugs was lessened. Mating experiments and transduction tests showed that all of the nine nek mutants are either closely linked or allelic, and the nek locus is closely linked to two genes-str (streptomycin) and spc (spectinomycin)-known to affect the 30S ribosome. The two nek mutants tested were recessive to the sensitive, wild-type allele. When the nek mutants were compared to the parental strain, pleiotropic effects of the nek mutations were observed. Resistance to low levels of streptomycin and spectinomycin was increased, whereas resistance to chloramphenicol was decreased. Also, the mutants were less able to adapt to high concentrations of lincomycin, and could no longer show phenotypic suppression of an arginine requirement by neomycin or kanamycin. Such pleiotropic effects are suggested to be the rule for mutations in genes that participate in the biosynthesis of a cellular organelle.  相似文献   

11.
The recombinant plasmid pSH2 confers type 1 piliation (Pil+) on a nonpiliated (Pil-) strain of Escherichia coli K-12. At least four plasmid-encoded gene products are involved in pilus biosynthesis and expression. We present evidence which indicates that one gene encodes an inhibitor of piliation. Hyperpiliated (Hyp) mutants were isolated after Tn5 insertion mutagenesis of pSH2 and introduction of the plasmid DNA into a Pil- strain of E. coli as unique small, compact colonies. Also, Hyp mutants clumped during growth in static broth and were piliated under several cultural conditions that normally suppressed piliation. Electron microscopic examination of Hyp mutants associated an observed 40-fold increase in pilin antigen with an increase in the number and length of pili per cell. All Hyp mutants examined failed to produce a 23-kilodalton protein that was encoded by a gene adjacent to the structural (pilin) gene for type 1 pili, and all Tn5 insertion mutations that produced the Hyp phenotype mapped in this region (hyp). Piliation in Hyp mutants could be reduced to near parental levels by introducing a second plasmid containing a parental hyp gene. Thus the 23-kilodalton (hyp) protein appears to act in trans to regulate the level of piliation.  相似文献   

12.
For the identification of the DNA region responsible for the sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha, we used previously isolated Tn5-mob insertional Sox- mutants. For seven mutants, the Tn5-mob insertion was localized on the chromosome rather than on the megaplasmids pHG41 or pHG42 by using the Tn5-mob-harboring vehicle pSUP5011 as probe. The specific insertion of Tn5-mob into a sox gene was determined for one Sox- mutant, strain TP19. An 18-kb EcoRI fragment was cloned in Escherichia coli by using the mobilizable plasmid pSUP202 as vector and the kanamycin resistance gene of Tn5 as marker. Conjugal transfer of the resulting hybrid plasmid, pKS3-13, to the wild type resulted in two phenotypically different groups of recombinants. Ninety-five percent of the recombinants were Sox+, kanamycin resistant, and tetracycline resistant; 5% were homogenote recombinants exhibiting the Sox-, kanamycin-resistant, tetracycline-sensitive phenotype, and these indicated the specific insertion. To isolate the respective wild-type sox gene, total DNA from a heterogenote recombinant was partially restricted with EcoRI, religated, and transformed in E. coli. Transformants carrying a pSUP202-derived hybrid plasmid with the intact sox gene were identified by screening for a tetracycline-resistant, kanamycin-sensitive, and chloramphenicol-sensitive phenotype and by complementation of the Sox- mutant TP19. A plasmid of this type, pEG12, contained an insert of 13 kb which gave a positive signal in Southern hybridization with the homologous probe of pKS3-13. pEG12 was used to determine the DNA homology of the sulfur-oxidizing enzyme systems of other thiobacteria. Strong hybridization signals were obtained with total DNA of the neutrophilic sulfur-oxidizing bacteria Paracoccus denitrificans, Thiobacillus versutus, and Rhodobacter capsulatus. No hybridization signal was obtained with DNA of other neutrophilic or acidophilic thiobacteria examined.  相似文献   

13.
Sixteen conditional lethal mutants of bacteriophage T4D have been isolated which grow on Escherichia coli CR63 (a su+ streptomycin-sensitive K12 strain) but are restricted by CR/s (a streptomycin-resistant derivative of CR63). These mutants have been given the prefix str. Four of these mutants are amber and 12 appear to be missense. Eleven of the 12 missense mutants appear to be "pseudo-amber" (i.e. they are restricted by a su- E. coli B strain but not by a su- K12 strain); the other missense mutant was not restricted by either B or K12. The str mutations mapped in 12 different genes. Most were clustered in a region of early genes (gene 56 to gene 47). Fifty-eight amber and 10 "pseudo-amber" mutants isolated previously for their inability to grow on E. coli B were tested for restriction by CR/s. All the amber mutants grew normally on CR/s, whereas all 10 "pseudo-amber" mutants were restricted by CR/s. This implies that the phenotype of the "pseudo-amber" mutants is the result of a ribosomal difference between the permissive host CR63 and the restrictive hosts B and CR/s. These str mutants should prove to be useful alternatives to amber mutants for genetic and biochemical studies of bacteriophage T4 and for studies of the E. coli ribosome. It should be possible ot isolate similar mutants in other bacteriophages provided that streptomycin resistant hosts are available.  相似文献   

14.
Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene.  相似文献   

15.
Plasmid pJMC21 contains Escherichia coli chromosomal DNA encoding Lon protease, HU-beta (HU-1), and an unidentified 67,000-dalton protein. A kanamycin resistance cassette was used in the construction of insertion and deletion mutations in hupB, the gene encoding HU-beta on plasmid pJMC21. The reconstructed plasmids were linearized and used to introduce hupB chromosomal mutations into JC7623 (recBC sbcBC). These mutations, as expected, mapped in the 9.8-min region of the E. coli chromosome by P1 transduction (16% linkage to proC+). Southern blot hybridization of chromosomal fragments verified that hupB+ was replaced by the mutant allele, with no indication of gene duplication. All the mutant strains had growth rates identical to that of wild-type E. coli, were resistant to UV irradiation and nitrofurantoin, and supported the in vivo transposition-replication of bacteriophage Mu, Mu lysogenization, Tn10 transposition from lambda 1098, and lambda replication-lysogenization. The only observable phenotypic variation was a reduced Mu plaque size on the hupB mutant strains; however, the yield of bacteriophage Mu in liquid lysates prepared from the mutant strains was indistinguishable from the yield for the wild type.  相似文献   

16.
In this study, we investigated the role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. A mini-Tn5 transposon mutant of E. cloacae SLD1a-1, designated as 4E6, was isolated that had lost the ability to reduce Se(VI) to Se(0). Genetic analysis of mutant strain 4E6 showed that the transposon was inserted within a menD gene among a menFDHBCE gene cluster that encodes for proteins required for menaquinone biosynthesis. A group of E. coli K12 strains with single mutations in the menF , menD , menC and menE genes were tested for loss of selenate reduction activity. The results showed that E. coli K12 carrying a deletion of either the menD , menC or menE gene was unable to reduce selenate. Complementation using wild-type sequences of the E.  cloacae SLD1a-1 menFDHBCE sequence successfully restored the selenate reduction activity in mutant strain 4E6, and E. coli K12 menD and menE mutants. Selenate reduction activity in 4E6 was also restored by chemical complementation using the menaquinone precursor compound 1,4-dihydroxy-2-nathphoic acid. The results of this work suggest that menaquinones are an important source of electrons for the selenate reductase, and are required for selenate reduction activity in E. cloacae SLD1a-1 and E. coli K12.  相似文献   

17.
Tolerance to antimicrobial agents is a universal phenomenon in bacteria which are no longer multiplying or whose growth rate slows. Since slowly multiplying bacteria occur in clinical infections, extended periods of antimicrobial chemotherapy are needed to eradicate these organisms and to achieve cure. In this study, the molecular basis of antibiotic tolerance was investigated using transposon mutagenesis. We screened 5000 Escherichia coli Tn10Cam mutants for reduction of kanamycin tolerance in late stationary phase and found that 4935 mutants were able to grow to late stationary phase. Reduced tolerance was observed in nine mutants which became sensitive to killing by kanamycin. The mutant KS639 was the most sensitive one to kanamycin, and its genome was disrupted in an intergenic region which lies between aldB and yiaW open reading frames. This mutant showed increased sensitivity not only to kanamycin but also to gentamicin, ciprofloxacin and rifampicin. Reduced tolerance of KS639 to kanamycin was also observed in a murine thigh infection model. P1 transduction to the wild type strains confirmed that the intergenic region was responsible for the tolerance of the bacterium to antibiotics. Using PCR-directed one-step gene replacement, we inactivated the genes aldB, yiaW and yiaV. We also deleted the intergenic region. There was no difference in kanamycin tolerance between each mutant (DeltaaldB, DeltayiaW and DeltayiaV) and the parental strain. But the mutant lacking the intergenic region showed reduced tolerance to kanamycin. These data suggest that the intergenic region between aldB and yiaW genes may be involved in tolerance to antimicrobial agents in E. coli. Furthermore, they show that it is important in murine infection during antibiotic treatment and lead to a faster kill of the mutant bacteria.  相似文献   

18.
A number of Solanum nigrum mutants resistant to the antibiotics spectinomycin, streptomycin and lincomycin have been isolated from regenerating leaf strips after mutagenesis with nitroso-methylurea. Selection of streptomycin- and spectinomycin-resistant mutants has been described earlier. Lincomycin-resistant mutants show resistance to higher levels of the antibiotic than used in the initial selection, and in the most resistant mutant (Ll7A1) maternal inheritance of the trait was demonstrated. The lincomycin-resistant mutant L17A1 and a streptomycin plus spectinomycin resistant double mutant (StSpl) were chosen for detailed molecular characterisation. Regions of the plastid DNA, within the genes encoding 16S and 23S rRNA and rps12 (3) were sequenced. For spectinomycin and lincomycin resistance, base changes identical to those in similar Nicotiana mutants were identified. Streptomycin resistance is associated with an A C change at codon 87 of rps 12 (converting a lysine into a glutamine), three codons upstream from a mutation earlier reported for Nicotiana. This site has not previously been implicated in streptomycin resistance mutations of higher plants, but has been found in Escherichia coli. The value of these mutants for studies on plastid genetics is discussed.  相似文献   

19.
Ethylmethane sulfonate-induced mutants of several Escherichia coli strains that required delta-aminolevulinic acid (ALA) for growth were isolated by penicillin enrichment or by selection for respiratory-defective strains resistant to the aminoglycoside antibiotic kanamycin. Three classes of mutants were obtained. Two-thirds of the strains were mutants in hemA. Representative of a third of the mutations was the hem-201 mutation. This mutation was mapped to min 8.6 to 8.7. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding phage 8F10 allowed the isolation of the gene. DNA sequence analysis revealed that the hem-201 gene encoded ALA dehydratase and was similar to a known hemB gene of E. coli. Complementation studies of hem-201 and hemB1 mutant strains with various hem-201 gene subfragments showed that hem-201 and the previously reported hemB1 mutation are in the same gene and that no other gene is required to complement the hem-201 mutant. ALA-forming activity from glutamate could not be detected by in vitro or in vivo assays. Extracts of hem-201 cells had drastically reduced ALA dehydratase levels, while cells transformed with the plasmid-encoded wild-type gene possessed highly elevated enzyme levels. The ALA requirement for growth, the lack of any ALA-forming enzymatic activity, and greatly reduced ALA dehydratase activity of the hem-201 strain suggest that a diffusible product of an enzyme in the heme biosynthetic pathway after ALA formation is involved in positive regulation of ALA biosynthesis. In contrast to the hem-201 mutant, previously isolated hemB mutants were not ALA auxotrophs and had no detectable ALA dehydratase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A shuttle vector carrying the origin of SV40 replication, the thymidine kinase (tk) gene of herpes simplex virus and the E. coli xanthine guanine phosphoribosyl transferase (gpt) gene has been introduced into human TK- cells. A transformed cell line containing only one stably integrated copy of the shuttle vector was used to study mutations in the introduced tk gene at the molecular level. Without selection for gpt expression, spontaneous TK- mutants arose at a frequency of approximately 10(-4)/generation, and were caused by deletion of plasmid sequences. However, when selection for expression of the gpt gene was applied, the background level of mutations at the tk gene was below 4.10(-6). From this cell line, TK- mutants were obtained after treatment with N-ethyl-N-nitrosourea (ENU). COS fusion appeared to be an efficient method for rescue and amplification of the integrated shuttle vector from the human chromosome. After further amplification and analysis in E. coli, rescued tk genes were easily identified and were shown to be physically unaltered by the rescue procedure. In contrast to rescued tk genes from TK+ cells, those obtained from the ENU-induced TK- mutants were unable to complement thymidine kinase-negative E. coli cells. Two such tk mutations were mapped in E. coli by marker rescue analysis. A GC----AT transition was the cause of both mutations. We show here that plasmid rescue by COS fusion is a reliable system for studying gene mutations in human cells, since no sequence changes occurred in rescued DNA except for the 2 ENU-induced sequence changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号