首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang CL  Wabl M 《Immunogenetics》2005,56(11):849-853
The cell line WEHI-231 expresses activation-induced cytidine deaminase (AID), the enzyme that mediates hypermutation and immunoglobulin class switch recombination in activated B cells. Although both the cDNA sequence and protein expression of AID appear normal, the frequency of mutation at the endogenous immunoglobulin locus is low. In this report, we have tested the mutational activity of the cell line with three different indicator constructs. The first construct measures a composite rate of transversions of C to G and C to A, respectively. The second construct measures only transversion from C to G. The third measures the canonical AID activity, from C to U, which after cell replication can result in a C to T transition. We found that in WEHI-231, the C to G activity is 32- to 37-times lower than in the hypermutating cell line 18–81. The C to T activity is also much reduced, but only 12-fold. We suggest that the WEHI-231 lacks an activity that subverts the faithful repair of incipient C to U mutations.  相似文献   

2.
Activation-induced cytidine deaminase (AID) is required for Ig class switch recombination, a process that introduces DNA double-strand breaks in B cells. We show in this study that AID associates with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promoting cell survival, presumably by resolving DNA double-strand breaks. Wild-type cells expressing AID mutants that fail to associate with DNA-PKcs or cells deficient in DNA-PKcs or 53BP1 expressing wild-type AID accumulate gammaH2AX foci, indicative of heightened DNA damage response. Thus, AID has two independent functions. AID catalyzes cytidine deamination that originates DNA double-strand breaks needed for recombination, and it promotes DNA damage response and cell survival. Our results thus resolve the paradox of how B cells undergoing DNA cytidine deamination and recombination exhibit heightened survival and suggest a mechanism for hyperIgM type II syndrome associated with AID mutants deficient in DNA-PKcs binding.  相似文献   

3.
Because of its susceptibility to apoptosis upon Ag receptor cross-linking and lack of IgD expression, cells of the mouse cell line WEHI-231 have been classified as immature B cells. In this study we show that early freezings of the WEHI-231 line express IgD but not CD93, which classifies the cells as more similar to mature B cells. Another, later line obviously has differentiated in culture and has all the hallmarks of activated B cells. But despite activation-induced cytidine deaminase expression, there is no switch in isotype; instead we found switching from one mu allele to the other. As a consequence of these findings, we now view the apoptosis studies in the WEHI-231 line to reflect properties of mature and activated B lymphocytes, respectively.  相似文献   

4.
5.
Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IkappaB kinase-dependent nuclear factor-kappaB activation pathway. H. pylori-mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori-associated gastric carcinogenesis.  相似文献   

6.
7.
8.
9.
Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates class switch recombination and somatic hypermutation of immunoglobulin genes (Ig) in B lymphocytes. However, AID also produces off-target DNA damage, including mutations in oncogenes and double-stranded breaks that can serve as substrates for oncogenic chromosomal translocations. AID is strictly regulated by a number of mechanisms, including phosphorylation at serine 38 and threonine 140, which increase activity. Here we show that phosphorylation can also suppress AID activity in vivo. Serine 3 is a novel phospho-acceptor which, when mutated to alanine, leads to increased class switching and c-myc/IgH translocations without affecting AID levels or catalytic activity. Conversely, increasing AID phosphorylation specifically on serine 3 by interfering with serine/threonine protein phosphatase 2A (PP2A) leads to decreased class switching. We conclude that AID activity and its oncogenic potential can be downregulated by phosphorylation of serine 3 and that this process is controlled by PP2A.  相似文献   

10.
11.
Activation-induced cytidine deaminase (AID) is essential to all three genetic alterations required for generation of antigen-specific immunoglobulin: class switch recombination, somatic hypermutation, and gene conversion. Here we demonstrate that AID molecules form a homodimer autonomously in the absence of RNA, DNA, other cofactors, or post-translational modifications. Studies on serial deletion mutants revealed the minimum region between Thr27 and His56 responsible for dimerization. Analyses of point mutations within this region revealed that the residues between Gly47 and Gly54 are most important for the dimer formation. Functional analyses of these mutations indicate that all mutations impairing the dimer formation are inefficient for class switching, suggesting that dimer formation is required for class switching activity. Dimer formation and its requirement for the function of AID are features that AID shares with APOBEC-1, an RNA editing enzyme of apolipoprotein B100 mRNA.  相似文献   

12.
Somatic hypermutation (SHM) of Ig genes depends upon the deamination of C nucleotides in WRCY (W = A/T, R = A/G, Y = C/T) motifs by activation-induced cytidine deaminase (AICDA). Despite this, a large number of mutations occur in WA motifs that can be accounted for by the activity of polymerase eta (POL eta). To determine whether there are AICDA-independent mutations and to characterize the relationship between AICDA- and POL eta-mediated mutations, 1470 H chain and 1313 kappa- and lambda-chain rearrangements from three AICDA(-/-) patients were analyzed. The Ig mutation frequency of all V(H) genes from AICDA(-/-) patients was 40-fold less than that of normal donors, whereas the mutation frequency of mutated V(H) sequences from AICDA(-/-) patients was 6.8-fold less than that of normal donors. AICDA(-/-) B cells lack mutations in WRCY/RGYW motifs as well as replacement mutations and mutational targeting in complementarity-determining regions. A significantly reduced mutation frequency in WA motifs compared with normal donors and an increased percentage of transitions, which may relate to reduced uracil DNA-glycosylase activity, suggest a role for AICDA in regulating POL eta and uracil DNA-glycosylase activity. Similar results were observed in V(L) rearrangements. The residual mutations were predominantly G:C substitutions, indicating that AICDA-independent cytidine deamination was a likely, yet inefficient, mechanism for mutating Ig genes.  相似文献   

13.
A major goal of the Alliance for Cellular Signaling is to elaborate the components of signal transduction networks in model cell systems, including murine B lymphocytes. Due to the importance of protein phosphorylation in many aspects of cell signaling, the initial efforts have focused on the identification of phosphorylated proteins. In order to identify serine- and threonine-phosphorylated proteins on a proteome-wide basis, WEHI-231 cells were treated with calyculin A, a serine/threonine phosphatase inhibitor, to induce high levels of protein phosphorylation. Proteins were extracted from whole-cell lysates and digested with trypsin. Phosphorylated peptides were then enriched using immobilized metal affinity chromatography and identified by liquid chromatography-tandem mass spectrometry. A total of 107 proteins and 193 phosphorylation sites were identified using these methods. Forty-two of these proteins have been reported to be phosphorylated, but only some of them have been detected in B cells. Fifty-four of the identified proteins were not previously known to be phosphorylated. The remaining 11 phosphoproteins have previously only been characterized as novel cDNA or genomic sequences. Many of the identified proteins were phosphorylated at multiple sites. The proteins identified in this study significantly expand the repertoire of proteins known to be phosphorylated in B cells. The number of newly identified phosphoproteins indicates that B cell signaling pathways utilizing protein phosphorylation are likely to be more complex than previously appreciated.  相似文献   

14.
15.
We have identified a novel gene referred to as activation-induced deaminase (AID) by subtraction of cDNAs derived from switch-induced and uninduced murine B lymphoma CH12F3-2 cells, more than 80% of which switch exclusively to IgA upon stimulation. The amino acid sequence encoded by AID cDNA is homologous to that of apolipoprotein B (apoB) mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC-1), a type of cytidine deaminase that constitutes a catalytic subunit for the apoB mRNA-editing complex. In vitro experiments using a glutathione S-transferase AID fusion protein revealed significant cytidine deaminase activity that is blocked by tetrahydrouridine and by zinc chelation. However, AID alone did neither demonstrate activity in C to U editing of apoB mRNA nor bind to AU-rich RNA targets. AID mRNA expression is induced in splenic B cells that were activated in vitro or by immunizations with sheep red blood cells. In situ hybridization of immunized spleen sections revealed the restricted expression of AID mRNA in developing germinal centers in which modulation of immunoglobulin gene information through somatic hypermutation and class switch recombination takes place. Taken together, these findings suggest that AID is a new member of the RNA-editing deaminase family and may play a role in genetic events in the germinal center B cell.  相似文献   

16.
17.
As in mammals, B cell maturation in the amphibian Xenopus involves somatic hypermutation (SHM) and class switch recombination to diversify the B cell receptor repertoire in response to Ag stimulation. Unlike mammals, however, the resulting increase in Ab affinity is poor in Xenopus, which is possibly related to the absence of germinal centers and a suboptimal selection mechanism of SHM. In mammals, both SHM and class switch recombination are mediated by the activation-induced cytidine deaminase enzyme and under Ag-dependent regulation. Given its evolutionary conservation in jawed vertebrates, we used activation-induced cytidine deaminase as a marker to monitor and localize B cell maturation in Xenopus upon immune responses and during early development. In adult, Xenopus laevis AID (XlAID) was detected mainly in the spleen, where cells expressing XlAID were preferentially distributed in follicular B cell zones, although some XlAID(+) cells were also found in the red pulp. XlAID was markedly up-regulated in the spleen with different kinetics upon bacterial stimulation and viral infection. However, during secondary anti-viral response XlAID was also noticeably expressed by PBLs, suggesting that XlAID remains active in a subset of circulating B cells. During ontogeny, XlAID expression was detected as early as 5 days postfertilization in liver before the first fully differentiated B cells appear. Concomitant with appearance of mature B cells XlAID was up-regulated upon bacterial stimulation or viral infection at later larval stages. This study highlights the conserved involvement of XlAID during Ag-dependent B cell responses in Xenopus but also suggests another role in B cell differentiation earlier in ontogeny.  相似文献   

18.
The beneficial effects of DNA cytidine deamination by activation-induced deaminase (AID; antibody gene diversification) and APOBEC3G (retrovirus restriction) are tempered by probable contributions to carcinogenesis. Multiple regulatory mechanisms serve to minimize this detrimental outcome. Here, we show that phosphorylation of a conserved threonine attenuates the intrinsic activity of activation-induced deaminase (Thr-27) and APOBEC3G (Thr-218). Phospho-null alanine mutants maintain intrinsic DNA deaminase activity, whereas phospho-mimetic glutamate mutants are inactive. The phospho-mimetic variants fail to mediate isotype switching in activated mouse splenic B lymphocytes or suppress HIV-1 replication in human T cells. Our data combine to suggest a model in which this critical threonine acts as a phospho-switch that fine-tunes the adaptive and innate immune responses and helps protect mammalian genomic DNA from procarcinogenic lesions.  相似文献   

19.
Activation-induced deaminase (AID) is required for both immunoglobulin class switch recombination and somatic hypermutation. AID is known to deaminate cytidines in single-stranded DNA, but the relationship of this step to the class switch or somatic hypermutation processes is not entirely clear. We have studied the activity of a recombinant form of the mouse AID protein that was purified from a baculovirus expression system. We find that the length of the single-stranded DNA target is critical to the action of AID at the Cs positioned anywhere along the length of the DNA. The DNA sequence surrounding a given C influences AID deamination efficiency. AID preferentially deaminates Cs in the WRC motif, and additionally has a small but consistent preference for purine at the position after the WRC, thereby favoring WRCr (the lowercase r corresponds to the smaller impact on activity).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号