首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. After 14 days of body suspension, fibre type composition and fibre cross-sectional area in the soleus muscle of 17-week-old male Sprague-Dawley rats were investigated. Oxidative enzyme activity of soleus motoneurones in the spinal cord was also examined. 2. After suspension, soleus muscle weight decreased by 44.2%, the cross-sectional area of SO and FOG fibres decreased by 60.4% and 58.6%, respectively. 3. The percentage of fibre types was not changed by suspension. However, ATPase activity after alkaline preincubation was markedly inhibited in FOG fibres. 4. Oxidative enzyme activity of soleus motoneurones was not changed by suspension. 5. This study demonstrates that using mature animals body suspension induces atrophy of fast- and slow-twitch fibres accompanied with the selective inhibition in ATPase activity of fast-twitch fibres, and without changes in histochemical profiles of the corresponding motoneurones.  相似文献   

2.
This paper presents theoretical considerations on the possibility of topographically ordered signal transmission in the control system of the muscle stretch reflex. It is investigated how correlations between Ia fibres from primary muscle spindle endings in conjunction with an appropriate connectivity of Ia fibres and motoneurones enable the stretch reflex system to trace local routes through the spinal cord. The complex data processing capabilities of the motoneuronal soma-dendritic membrane system are fully taken into account, and it is argued that correlations between inputs to this system may play an important role for signal transmission through the spinal cord.  相似文献   

3.
1. The reflex activity elicited by movement of the mero-carpopodite (M-C) joint in the cheliped of the crayfish Astacus leptodactylus is investigated and the role of the different proprioceptors (chordotonal and myochordotonal organs) separately studied. 2. The reflex discharge involves mainly the tonic motoneurones of the extensor (E), the flexor (F) and the accessory flexor (AF) muscles. 3. M-C joint posture is also regulated by the cuticular stress detector (CSD2) afferents: they increase mainly the F discharge and secondarily the AF command. 4. The activity of the motor axons supplying the muscles of the meropodite can be also influenced by a variety of natural stimuli applied to other appendages. The effect usually produced is a general flexion reaction which is characterized by a reciprocity between E and F involving both central and peripheral mechanisms. 5. The AF muscle is innervated by two antagonistic motoneurones, an excitatory neurone functionally linked in its discharge with one of the four excitors supplying F and an inhibitory motoneurone, common with E. The resulting competitive effect between these two neurones has been recorded intracellularly in AF muscle fibres. 6. The role of the myochordotonal organ (MCO) in the crayfish is discussed. In particular the modulation of the AF command in relation to the discharges of the motor nerves to the main muscle E and F is studied.  相似文献   

4.
Serial transmission electron microscopy and 3D reconstruction were used to document cell morphology and position of the motoneurones innervating somites 1 and 2 of a 12.5-day amphioxus larva, of Branchiostoma floridae , and also those innervating the dorsal compartment of somites 3 through 6 of an 8-day larva. Motoneurones supplying the ventral and dorsal compartments can be distinguished from one another on a number of morphological criteria. The ventral compartment motoneurones are neither symmetrical nor particularly ordered in arrangement. Their cilia are short and point forward or obliquely across the central canal; their axons run along the basal lamina adjacent to processes from muscle fibres, with which they make extended linear series of synapses containing 45–60 nm synaptic vesicles. The dorsal compartment motoneurones are paired and tend to be positioned at or near the junctions between somites. Their cilia are longer and project caudally; their axons are large, filled with mitochondria and 30–45 nm synaptic vesicles, and make synapses only at specific, segmentally repeated sites.
  An unusual feature of both cell types is that synaptic input occurs all along the axon, either by direct axo-axonal synapses or via slender dendritic processes. This allows for redundancy and multiple inputs, and is possible only because amphioxus somatic motor axons lie entirely within the nerve cord, which is itself an unusual feature among chordates. The possible significance of dual somatic innervation is discussed in relation to the dual innervation of the head in vertebrates, which has separate sets of somatic and visceral/branchiomotor nerves.  相似文献   

5.
Six extraocular muscles of the grass snake, Natrix natrix L. together with their motor end plates were examined in the light and electron microscope, and the measurements of the diameter of muscle fibres and the area of their motor end plates were performed. Morphologically, two types of muscle fibres: tonic and red phase ones were distinguished. The former fibres, 2,3 to 14,5 mum in diameter possess single or multiple (up to five on a single fibre) "en grappe" motor end plates, without postsynaptic junctional folds. The latter fibres, 10...40 mum in diameter have single, "en plaque" motor end plates, with numerous postsynaptic junctional infoldings. The morphological features of muscle fibres and motor end plates as well as the correlation between the diameter of muscle fibres and the area of motor end plates are discussed.  相似文献   

6.
We studied the histochemical and in situ contractile changes in a rat ankle extensor, medial gastrocnemius, in which activation of muscle fibres by motoneurones was blocked for 14 days, using the sodium channel blocker tetrodotoxin applied to the sciatic nerve. Muscles were atrophied and showed slower twitch responses, greater fusion at subtetanic frequencies of stimulation, and higher twitch/tetanic ratios. Tetanic force/mm2 of fibre area and fatiguability were unchanged. Type II fibres were more atrophied and showed greater decreases in mitochondrial succinate dehydrogenase activity than type I fibres. The contractile changes resulting from complete disuse do not occur in models in which weight-bearing alone has been removed (space flight, hindlimb suspension), suggesting that the residual motoneurone activity reported in models of weightlessness is sufficient to prevent these responses. Similarly, the finding of a greater type II fibre susceptibility to complete disuse, which differs from the pattern seen in models of weightlessness, suggest that this residual motoneurone activity in the latter influences atrophic responses in a manner that is variable among motor unit types, to produce the reported preferential type I atrophy characteristic of removal of weight-bearing.  相似文献   

7.
 This report investigates the reflex activation of locust flight motoneurones following their spiking activity. As shown elsewhere, an electrical stimulus applied to a flight muscle produces multiple waves of delayed excitation in wing elevator and depressor motoneurones. Nerve ablation experiments show that this response is initiated by the mechanical movement of the stimulated muscle, and not the antidromic spike evoked in the motoneurone. The delayed excitation still occurs in the absence of inputs from the wing receptor systems, and also when all other sources of afferent feedback are abolished, excepting thoracic nerve 2. Following complete deafferentation, spikes in flight motoneurones had no influence on other flight motoneurones. Numerous afferents in the purely sensory nerve 2 are excited by flight muscle contractions. The responses are consistent for repeated contractions of the same muscle, but differ when other muscles are stimulated. During tethered flight, changes in the activation of single flight muscles are reflected in changes of the nerve 2 discharge pattern. Electrical stimulation of this nerve causes delayed excitation of flight motoneurones, and can initiate flight activity. It is suggested that internal proprioceptors, such as those associated with nerve 2, will contribute to shaping the final motor output for flight behaviour. Accepted: 24 April 1996  相似文献   

8.
Autogenetic inhibition of homonymous and synergist motoneurones can be elicited by very weak partial twitches of gastrocnemius medialis muscle, but during sustained contractions the amplitude of inhibitory post-synaptic potentials decreases quickly. A similar decrease also occurs during stronger contractions. The mechanism responsible for this decrease is still active in low spinal preparations. Pre-synaptic inhibition of Ib afferent fibres might contribute to this reduction of efficiency in the transmission of Ib afferent inputs to motoneurones.  相似文献   

9.
The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap ''in-series''. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.  相似文献   

10.
Four muscle fibre types are described in the biceps and extensor digitorum communis muscles of the newt forelimb. The histological criteria forming the basis for the distinctions include differential staining with p-phenylenediamine and succinate dehydrogenase histochemistry and electron microscopy. In addition, three distinctive motor unit types are described for the biceps muscle. These are fast units, slow units and intermediate units. The structure of muscle fibre and the physiological characteristics of muscle fibres belonging to each motor unit, have been correlated by using iontophoretic passage of Lucifer yellow into muscle fibres belonging to physiologically characterized motor units and their subsequent histological identification by the succinate dehydrogenase reaction. The three motor unit types correspond to slow muscle fibres, intermediate muscle fibres and two classes of fast muscle fibres.  相似文献   

11.
A general survey is given of old as well as more recent findings concerning matches between electrophysiological properties of motoneurones and contractile properties of their muscle fibres. Mechanisms for creating and maintaining such matches are discussed. It is pointed out that it is not sufficient to describe the variation of functional motoneurone characteristics simply in terms of 'fast' or 'slow': all properties seem continuously graded and there is cytochemical evidence for several, seemingly independent parameters of functional specialisation.  相似文献   

12.
Summary The radial nerve cords of members of the class Ophiuroidea consist of two parts, the ectoneural and the hyponeural tissues, which are separated by an acellular basal lamina. The hyponeural tissue is composed entirely of motor fibres. The cell bodies of the hyponeural neurones are arranged in ganglia, one to each segment of the arm, and each containing approximately one hundred cell bodies. Synaptic contact between the two tissues occurs across the basal lamina. Ultrastructural evidence shows that the majority of these synapses operate in the ectoneural to hyponeural direction. Three pairs of nerve bundles, each containing approximately thirty five large motor fibres arise from each ganglion and innervate the intervertebral muscles. The large motor fibres divide into a number of pre-terminal axons in the region in which the motor fibre enters the muscle block. The terminal axons run at right-angles across the muscle fibres and neuromuscular junctions are found at the points of contact between the two; each terminal axon makes contact with a large number of muscle fibres. The hyponeural axons also pass through the juxtaligamental tissue before they reach the muscle blocks and there is some evidence of synaptic contact with the juxtaligamental cells. The juxtaligamental tissue is thought to be associated with changes in the structural properties of the collagenous ligaments of the arm during arm autotomy (Wilkie 1979). Degeneration studies confirmed the layout of the hyponeural motor axons.  相似文献   

13.
Experimental work in cats has shown that a series of afferent impulses from muscle receptors activated during contractions of an ankle extensor elicit declining inhibitory potentials in homonymous and synergic motoneurones. Inhibitory potentials were ascribed to the action of Ib afferents from Golgi tendon organs that are specific contraction-sensitive mechano-receptors. The decline of inhibition was, at least partly, due to presynaptic inhibition acting as a filter of tendon organ information in the spinal cord. In the present work, a computer model of the simplest spinal pathways from Ib fibres to motoneurones was designed. In order to make the model as realistic as possible, the most pertinent of the known functional properties of the neuronal elements were incorporated. Functions simulating primary afferent depolarizations of Ib terminals, i.e. the electrophysiological correlate of presynaptic inhibition, were introduced in the network. Simulations showed that declining inhibitory potentials were computed in the output stage of the network that represented the motoneurone-like element. These results support the assumption that the filtering out of Ib inputs is to a great extent due to presynaptic inhibition. The model behaved as expected, suggesting that predictions of the behaviour of neural components in the biological network should be possible upon introduction in the model of other, more complex, spinal pathways from Ib fibres to motoneurones.  相似文献   

14.
Structure and function are reviewed in the masticatory muscles and in the muscles of the lower face and tongue. The enormous strength of jaw closure is in large part due to the pinnated arrangement of the muscle fibres in the masseter. This muscle, like other masticatory muscles, is unusual in that the cell bodies of the muscle spindle afferents lie in the brain stem rather than in an external ganglion; spindles are absent in the lower facial muscles. Although few data are available, the numbers of motor units in the masticatory muscles, and probably in the lower facial muscles also, appear to he much greater than in limb muscles. The motor units in the facial and tongue muscles are largely composed of histochemical type II (‘fast-twitch’) fibres, but in the masticatory muscles there are substantial numbers of fibres intermediate between type I (‘slow twitch’) and type II, and fibre type grouping is present. In comparison with limb muscles, there is little information on ageing changes in oro-facial muscles. The masticatory muscles do, however, show some atrophy and loss of X-ray density, while motor unit twitches are prolonged. Strength is reduced in the tongue and masticatory muscles. It is known that limb muscle properties are largely governed by their innervation, both through the pattern and amount of impulse activity, and the delivery of trophic messengers; the situation for oro-facial muscles is unclear. The structural and functional differences between the two types of muscle indicate the need for conducting ageing studies on the oro-facial muscles, rather than relying on extrapolations from limb muscles.  相似文献   

15.
Calcitonin gene-related peptide (CGRP) occurs only in some motoneurons. In this study, the presence of CGRP in motor endplates in relation to muscle fibre types was examined in slow (soleus muscle) and fast [tibialis anterior (TA) and extensor digitorum longus (EDL)] leg muscles of the rat. CGRP was detected by use of immunohistochemical methods, and staining for the mitochondrial-bound enzyme NADH-TR was used for demonstration of fibre types. The fibres showing low NADH-TR activity were interpreted as representing IIB fibres. All such fibres located in the superficial portion of TA were innervated by endplates displaying CGRP-like immunoreactivity (LI), whereas in the deep portion of TA some of these fibres lacked CGRP-LI at their endplates. Thirty per cent of the IIB fibres in EDL showed CGRP-LI at the endplates. All fibres in TA and EDL displaying high NADH-TR activity and interpreted as type-IIA fibres, lacked CGRP-LI in their motor innervation. One third of the fibres with intermediate NADH-TR activity in TA exhibited CGRP-LI at their endplates, whereas in EDL only few such fibres displayed CGRP-LI in the endplate formation. These fibres are likely to belong to type-IIX or type-I motor units. CGRP-LI was very rarely detected at the endplates in the soleus muscle. These observations show that distinct differences exist between the slow muscle, soleus, and the fast muscles, TA and EDL, but that there are also differences between the different types of fibres in TA and EDL with respect to presence of CGRP-LI at the endplates. As CGRP-LI was frequently detected at endplates of IIB fibres, it is likely that CGRP has a particular role related to the differentiation and maintenance of these fibres.  相似文献   

16.
Mef2s are required for thick filament formation in nascent muscle fibres   总被引:3,自引:0,他引:3  
During skeletal muscle differentiation, the actomyosin motor is assembled into myofibrils, multiprotein machines that generate and transmit force to cell ends. How expression of muscle proteins is coordinated to build the myofibril is unknown. Here we show that zebrafish Mef2d and Mef2c proteins are required redundantly for assembly of myosin-containing thick filaments in nascent muscle fibres, but not for the earlier steps of skeletal muscle fibre differentiation, elongation, fusion or thin filament gene expression. mef2d mRNA and protein is present in myoblasts, whereas mef2c expression commences in muscle fibres. Knockdown of both Mef2s with antisense morpholino oligonucleotides or in mutant fish blocks muscle function and prevents sarcomere assembly. Cell transplantation and heat-shock-driven rescue reveal a cell-autonomous requirement for Mef2 within fibres. In nascent fibres, Mef2 drives expression of genes encoding thick, but not thin, filament proteins. Among genes analysed, myosin heavy and light chains and myosin-binding protein C require Mef2 for normal expression, whereas actin, tropomyosin and troponin do not. Our findings show that Mef2 controls skeletal muscle formation after terminal differentiation and define a new maturation step in vertebrate skeletal muscle development at which thick filament gene expression is controlled.  相似文献   

17.
In line with the tradition of the Dutch school of functional morphology, an attempt is made to integrate numerical models of sarcomeres, muscle fibres, muscles, bone-connective-tissue systems, joints, muscle spindles and neural networks into one model simulating motor control. There are two purposes for this attempt. Firstly, to indicate whether numerical properties of the organs forming a system of motor control can be explained in terms of its motor functions. Secondly, to indicate properties that emerge from the integration of the organs into a system of motor control: how much more is an integrated motor system than the sum of its functional components. The motor control system of chewing has been taken as an example, particularly that in rats.  相似文献   

18.
The relationship between motor unit force and the recorded voltage produced by activated muscle unit fibres (electromyogram, EMG) was examined in normal and reinnervated rat tibialis anterior muscles. The number, cross-sectional area, and radial distance from the recording electrode of muscle fibres in a given unit, obtained directly from a sample of glycogen-depleted motor units, were analysed in relation to the magnitude of the EMG signal produced by that unit. EMG peak to peak amplitude and area varied as approximately the square root of twitch force in both normal and reinnervated units. Furthermore, the EMG amplitude increased approximately as the total cross-sectional area of the motor unit (number of muscle fibres x the average cross-sectional area of the fibres) and inversely with approximately the square root of the distance of fibres from the recording electrodes on the surface of the muscle.  相似文献   

19.
In the posterior salivary duct and gland of Octopus vulgaris and of Eledone cirrhosa, the duct secretory nerve trunks and their ramifications in the gland tubules include many fibres that incorporate labelled serotonin. However, there are also unlabelled secretory fibres, which cannot be discriminated from incorporating fibres on morphological grounds. Neuroglandular junctions are not apparently established by incorporating fibres. In the duct, the motor nerve trunks contain a small number of labelled fibres, and nerve bundles supplying the duct muscle contain, in variable proportions, serotonin incorporating fibres. Both labelled and unlabelled nerve fibres reach the duct muscle fibres, but neuromuscular junctions involve only unlabelled presynaptic fibres. The nerve fibres which join the gland muscle are usually unlabelled, and the small quota of incorporating fibres in the motor trunks apparently supply only duct tissues. Both secretory and motor trunks, originating from different ganglia, can be considered to contain heterogeneous fibres, releasing different neurotransmitters at the terminals. Certain of these fibres could be serotoninergic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号