首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The IM-9 human B-lymphoblast cell line grows well in a completely defined serum-free medium containing insulin, transferrin, low density lipoprotein and oleic acid in complex with fatty acid-free bovine serum albumin. Growth of the IM-9 cells is stimulated by addition of physiological concentrations of hydrocortisone to this medium. the order of growth stimulatory potency of several steroids is dexamethasone > hydrocortisone > aldosterone, whereas testosterone does not stimulate growth of the IM-9 cells. This order of potency suggests that the effect is mediated by binding to glucocorticoid receptors. Growth of the IM-9 cells is also stimulated by the neuropeptide substance P. the defined serum-free medium described in this report will be useful for further studies of the biological responses of the IM-9 cells to other hormones in the absence of interference from hormones and growth factors present in serum.  相似文献   

2.
《The Journal of cell biology》1983,97(4):1179-1190
Serum-free, hormonally defined media have been developed for optimal growth of a rat hepatoma cell line. The cells' hormonal requirements for growth are dramatically altered both qualitatively and quantitatively by whether they were plated onto tissue culture plastic or collagenous substrata. On collagenous substrata, the cells required insulin, glucagon, growth hormone, prolactin, and linoleic acid (bound to BSA), and zinc, copper, and selenium. For growth on tissue culture plastic, the cells required the above factors at higher concentrations plus several additional factors: transferrin, hydrocortisone, and triiodothyronine. To ascertain the relative influence of hormones versus substratum on the growth and differentiation of rat hepatoma cells, various parameters of growth and of liver-specific and housekeeping functions were compared in cells grown in serum-free, hormonally supplemented, or serum-supplemented medium and on either tissue culture plastic or type I collagen gels. The substratum was found to be the primary determinant of attachment and survival of the cells. Even in serum-free media, the cells showed attachment and survival efficiencies of 40-50% at low seeding densities and even higher efficiencies at high seeding densities when the cells were plated onto collagenous substrata. However, optimal attachment and survival efficiencies of the cells on collagenous substrata still required either serum or hormonal supplements. On tissue culture plastic, there was no survival of the cells at any seeding density without either serum or hormonal supplements added to the medium. A defined medium designed for cells plated on tissue culture plastic, containing increased levels of hormones plus additional factors over those in the defined medium designed for cells on collagenous substrata, was found to permit attachment and survival of the cells plated into serum-free medium and onto tissue culture plastic. Growth of the cells was influenced by both substrata and hormones. When plated onto collagen gel substrata as compared with tissue culture plastic, the cells required fewer hormones and growth factors in the serum-free, hormone-supplemented media to achieve optimal growth rates. Growth rates of the cells at low and high seeding densities were equivalent in the hormonally and serum-supplemented media as long as comparisons were made on the same substratum and the hormonally supplemented medium used was the one designed for that substratum. For a given medium, either serum or hormonally supplemented, the saturation densities were highest for tissue culture plastic as compared with collagen gels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Summary Epithelial cells from mouse seminal vesicles were enzymatically dissociated enriched by gradient centrifugation, and maintained in collagen gel cultures with defined (serum-free) media. The epithelial origin of the cells was determined morhologically, immunocytochemically, and biochemically. Cells formed three-dimensional colonies with a lumen in collagen gels. Cell number was increased eight-fold within a 8 to 12-d culture period in a medium supplemented with epidermal growth factor (EGF) (10 ng/ml), insulin (10 μg/ml), transferrin (10 μg/ml), cholera toxin (10 ng/ml), and hydrocortisone (0.1 μg/ml). The cells required eGF and insulin; the growth-promoting effects of these two peptide hormones were optimized by transferrin, cholera toxin, and hydrocortisone. Fetal bovine serum did not support growth; rather, it suppressed the stimulated growth observed in serum-free media. A time-course study revealed that a lag period preceded rapi growth. The collagen gel, serum-free culture provides a powerful tool to study the effects of hormones on proliferation and differentiation of androgen sensitive cells.  相似文献   

4.
In this study, we demonstrate that an IL-2-dependent T-cell clone (HT-2) can be grown in a serum-free medium (HB101) with defined additives at rates comparable to those which can be obtained in serum-containing medium. Further, we show that cells cultured in the serum-free medium in the absence of IL-2 arrest growth in the G1 portion of the cell cycle, and that these arrested cells can be stimulated to reenter the cell cycle upon the addition of IL-2 to the culture medium. Growth of these cells in the absence of serum requires the presence of IL-2 as well as other hormones and growth factors and 2-mercaptoethanol. HT-2 cells have been grown continuously in the serum-free medium for periods of up to 1 month.  相似文献   

5.
A serum-free, chemically defined medium for supporting rhythmic contraction, maximum survival, and moderate growth of cardiac cells was achieved by using a combination of hormones and growth supplements in a mixture of equal volumes of Ham's F12 and Dulbecco's modified Eagle's medium. The hormones and growth supplements included insulin, transferrin, selenium, fetuin, bovine serum albumin, hydrocortisone (HC), L-thyroxine (T4), and epidermal growth factor (EGF). Cardiac cells were grown on fibronectin-precoated plates using the above serum-free medium. Cells grown in this medium exhibited a higher beating rate and were maintained for a longer time compared to those cells grown in serum. The effects of T4, EGF, and HC on beating rate and survival time of both cultures of mixed cell population and enriched myoblast cell population were studied. In the enriched myoblast cell cultures grown in serum-supplemented medium, the beating rate ranged from 40 to 200 beats/min, and these cultures survived for 30 d. When these enriched cell cultures were grown in serum-free hormone-supplemented medium, the beating rate ranged from 190 to 240 beats/min, and these cultures survived for more than 90 d. These results show that some hormones affect growth, whereas others affect function.  相似文献   

6.
Summary A serum-free, chemically defined medium for supporting rhythmic contraction, maximum survival, and moderate growth of cardiac cells was achieved by using a combination of hormones and growth supplements in a mixture of equal volumes of Ham’s F12 and Dulbecco’s modified Eagle’s medium. The hormones and growth supplements included insulin, transferrin, selenium, fetuin, bovine serum albumin, hydrocortisone (HC),l-thyroxine (T4), and epidermal growth factor (EGF). Cardiac cells were grown on fibronectin-precoated plates using the above serum-free medium. Cells grow in this medium exhibited a higher beating rate and were maintained for a longer time compared to those cells grown in serum. The effects of T4, EGF, and HC on beating rate and survival time of both cultures of mixed cell population and enriched myoblast cell population were studied. In the enriched myoblast cell cultures grown in serum-supplemented medium, the beating rate ranged from 40 to 200 beats/min, and these cultures survived for 30 d. When these enriched cell cultures were grown in serum-free hormone-supplemented medium, the beating rate ranged from 190 to 240 beats/min, and these cultures survived for more than 90 d. These results show that some hormones affect growth, whereas others affect function.  相似文献   

7.
Growth and function of primary cultures of granulosa cells obtained from immature, hypophysectomized, estrogen-treated rats were compared in serum-containing and serum-free media. In serum-free medium (1:1 mixture of DMEM:F-12) supplemented with insulin, hydrocortisone, transferrin and fibronectin (4F medium), the cells remained healthy and steroidogenically responsive for at least 60 days in culture. The growth profile of the granulosa cells in 4F medium was similar to that obtained in serum-containing medium. In both media cell proliferation did not exceed more than one cell doubling. DMEM:F-12 alone did not support the cell viability. Upon FSH stimulation, the cells produced 25 fold more progestin and estrogen per cell in 4F medium than in medium supplemented with 5% serum. This effect was not directly related to serum proteins which mediate cell adhesion since cells cultured in dishes precoated with serum remained steroidogenically responsive to FSH. Cholera toxin and Bt2-cAMP readily stimulated progestin production in the presence of serum. The inhibitory effect of serum was not reversed by adding the four factors to serum-containing medium. The factors were essential for the FSH-induced steroidogenesis in serum-free medium. After four days of incubation in 4F medium, the cells showed a transient loss of their ability to produce progestin in response to FSH. In both 4F medium as well as in serum-containing medium, the cells regained their hormonal responsiveness after 35 days in culture. Since the loss of hormonal responsiveness occurred at the same time as growth was initiated in the cultures, it is suggested that the FSH-induced steroidogenesis is negatively controlled by growth-related processes.  相似文献   

8.
Madin Darby canine kidney cells can grow in synthetic medium supplemented with 5 factors – insulin, transferrin, prostaglandin E1, hydrocortisone and triiodothyronine – as a serum substitute. These 5 factors permit growth for one month in the absence of serum, and a growth rate equivalent to that observed in serum-supplemented medium. Dibutyryl cAMP substitutes for prostaglandin E1 in the medium, suggesting that increased growth of Maden Darby canine kidney cells results from increased intracellular cAMP. Potential applications of the serum-free medium are discussed. The medium permits the selective growth of primary epithelial cell cultures in the absence of fibroblast over-growth, and a defined analysis of the mechanisms by which hormones regulate hemicyst formation.  相似文献   

9.
Numerous studies have shown that prolactin (PRL) production by GH3 cells grown in serum supplemented media is regulated by several hormones including thyroliberin (TRH). The recent availability of hormonally defined, serum-free media for the growth of GH3 cells has made it possible to determine the effect of TRH in absence of other prolactin regulating hormones. Here we demonstrate that transfer of GH3/B6 cells from serum-supplemented medium to serum-free media results in several important changes: (1) altered growth response to TRH, (2) altered cell attachment and morphology, (3) greatly reduced prolactin production, and (4) greater stimulation of prolactin production by TRH. After 4 days in serum-free medium, TRH stimulates prolactin production by as much as 5-fold instead of approximately 2-fold in serum-supplemented medium. Furthermore, this increased responsiveness to TRH in serum-free medium is accompanied by a 10-fold decrease in the ED50 for TRH (concentration needed for half-maximal response) and paradoxically by a 2-fold reduction in the number of high-affinity TRH binding sites without significant change of their association constant.  相似文献   

10.
A serum-free culture system was established for human KB carcinoma (HeLa) cells that consisted of a chemically defined medium and several growth factors including epidermal growth factor (EGF), insulin, transferrin, hydrocortisone, and ethanolamine. EGF and insulin showed the greatest effects on the growth rate of KB cells. Insulin-like growth factor I (IGF-I) at the same concentration as insulin stimulated cell growth less than insulin. Transferrin, hydrocortisone, or ethanolamine had no growth-stimulatory effects alone but were stimulatory when combined with EGF and/or insulin. Transforming growth factor-beta inhibited growth and triiodothyronine stimulated growth. The growth factor requirements were established for several KB mutants with low EGF receptor levels that had been selected for resistance to a conjugate of EGF with Pseudomonas exotoxin (EGF-PE). Three of five KB mutants did not respond to EGF; two other mutants responded to a lesser extent than the parental KB cells. Four mutants had a reduced response to insulin and responded to T3; one mutant (ET-30) responded to neither. These results indicate that KB cells selected for EGF-PE resistance have lost their growth response to EGF and illustrate the usefulness of serum-free medium for studying the growth factor requirements of mutants with altered receptor levels.  相似文献   

11.
Summary A serum-free culture system was used to compare the nutritional requirements of mouse mammary cells transformed by bovine papillomavirus type 1 (ID13 cells) and the uninfected parent line (C127 cells). The serum-free, chemically defined medium used for this study was an MCDB 151-based medium (MCDB 151+S+I), supplemented with epidermal growth factor, transferrin, hydrocortisone, ethanolamine, phosphoethanolamine, retinoic acid, trace metals, and insulin. Proliferation of either cell type in serum-free culture required the addition of 250 μg/ml of insulin. ID13 cells have a doubling time of greater than 96 h in MCDB 151+S+I, whereas C127 cells have a doubling time of 60 h. This is in sharp contrast to the growth characteristics of the two cell types in 10% fetal bovine serum, where doubling times for the ID13 and C127 cells are 24 and 30 h, respectively. Culture of the cells in a serum-free medium has therefore revealed that the papillomavirus-transformed cells have more stringent growth requirements than the uninfected parent line. This work was supported in part by grant #1-P01 NS19214 from the National Institutes of Health, Bethesda, MD, NSF grant #R11-8217798 from the National Science Foundation, Washington, DC, and by a grant from the Otolaryngology Foundation.  相似文献   

12.
Dissociated embryonic chick dorsal root ganglionic cells were plated on collagen-coated tissue culture dishes in Eagle's basal medium containing 10% fetal calf serum (FCS). After 48 h, which allowed adequate cell attachment, the cultures were washed with serum-free medium and then received fresh medium supplemented with 10% FCS or serum-free defined medium (N1), which was supplemented with insulin, transferrin, progesterone, putrescine and selenium. In addition, both media required the addition of Nerve Growth Factor (NGF). N1 medium selectively maintained the neurons and did not support proliferation or even survival of almost all non-neuronal elements (fibroblasts and Schwann cells). Survival of neurons in N1 was initially as good and eventually better than in serum-containing medium. After 6 days in N1 the cultures consisted almost entirely of neurons (>95%), which had smaller cell bodies but more extensive process formation than in serum-supplemented medium. The omission of any one of the supplements resulted in a reduction of neuron survival. The ability to generate cultures of pure neurons in a serum-free defined medium may be useful for studying (i) the role of specific hormones and growth factors normally supplied by serum in the maintenance of neurons and (ii) biochemical parameters of neurons in the absence of the substantial background due to non-neuronal elements.  相似文献   

13.
The hormones which support growth, in vitro, of normal, neonatal human foreskin fibroblasts were determined. Wheresas thrombin and hydrocortisone were major growth stimulants, platelet-derived growth factor was not. Human foreskin fibroblasts grew in a serum-free, biochemically defined medium consisting of epidermal growth factor (100 ng/ml), insulin (100 ng/ml), trasferrin (10 μg/ml), thrombin (1 μg/ml), ascorbic acid (10 μg/ml), and hydrocortisone (5 × 10?5M) in a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12, supplemented with ovalbumin (1 mg/ml) and trace elements. The growth achieved was comparable to that achieved with 5% fetal bovine serum. Neither platelet-derived growth factor, fibroblst growth factor, nor somatomedin activity increased proliferation. This serum-free medium designated Defined Medium F, provides a biochemically defined system for growth and limited subcultivation of human foreskin fibroblasts in vitro.  相似文献   

14.
Summary Factors regulating the proliferation of normal, preneoplastic, and neoplastic rat tracheal epithelial (RTE) cells were investigated to identify changes taking place during the progression of RTE cells to neoplasia. Normal RTE cells exhibit clonal proliferation in a serum-free medium containing pituitary extract, serum albumin, cholera toxin, epidermal growth factor, hydrocortisone, and insulin. All combinations of these six factors were examined for their abilities to support clonal proliferation of normal, preneoplastic, and neoplastic RTE cells. In general, preneoplastic RTE cells required fewer factors for proliferation than normal RTE cells, and neoplastic cells required fewer factors than preneoplastic cells. A common pattern of reductions has been identified in the growth factors required for the clonal proliferation of preneoplastic vs. normal RTE cells and for neoplastic vs. preneoplastic and normal RTE cells. Normal RTE cells exhibit clonal proliferation in a serum-free medium supplemented with a minimum of six factors: bovine serum albumin, bovine pituitary extract, cholera toxin, epidermal growth factor, hydrocortisone, and insulin. Preneoplastic RTE cells exhibit clonal proliferation in a serum-free medium supplemented with four factors: bovine serum albumin, bovine pituitary extract, hydrocortisone, and insulin. Finally, neoplastic RTE cells exhibit clonal proliferation in a serum-free medium supplemented with two factors: bovine serum albumin and bovine pituitary extract. These results suggest that the progression of RTE cells to neoplasia is associated with a series of changes in regulatory pathways that control cell proliferation.  相似文献   

15.
16.
Cell suspension containing normal or tumor epithelium were readily obtained by enzymatically digesting rat mammary glands from perphenazine-treated (prolactin-hypersecreting) cycling, female virgin animals or hormone- responsive mammary tumors from animal treated with dimethylbenzanthracene. Cell suspensions were fractioned into predominantly epithelial and predominantly stromal cells by their differential rates of attachment to culture dishes. Both normal mammary and tumor epithelial cells were characterized by the presence of specific cell-junctional complexes, desmosome-like structures, surface microvilli, and their ability to synthesize casein. Serum-dependent protease activity was greater in cultures derived from tumors, and cells from such cultures grew in agarose whereas those from the non-neoplastic gland did not. The addition of prolactin to the culture medium stimulated DNA synthesis in primary or secondary epithelial cultures from tumors, whereas additional insulin and hydrocortisone with prolactin were required for similar levels of DNA synthesis in cultures from non-neoplastic glands. The fraction of cells synthesizing DNA was, however, smaller than that with 10 percent serum measured in the same time period. Both growth hormone and epidermal growth factor stimulated DNA synthesis but to a lesser extent than did prolactin. Prolactin with hydrocortisone and insulin were relatively inactive in promoting DNA synthesis of the nonepithelial cells whereas pituitary fibroblast growth factor was more active. These mitogenic effects were obtained when the hormones were added to the medium at near physiological concentrations, and paralleled the known activities of the hormones in control of mammary gland growth and development in the rat.  相似文献   

17.
Serum-free growth of adult human prostatic epithelial cells   总被引:11,自引:0,他引:11  
Summary Proliferation of adult human prostatic epithelial cells in serum-free medium occurs upon the addition of cholera toxin, epidermal growth factor, pituitary extract, and hydrocortisone to basal medium PFMR-4A. Insulin and selenium enhance proliferation and permit growth at lower cell densities. Reducing the level of calcium in the medium dramatically alters morphology and also seems to increase proliferation. Mortal strains of cells derived from normal central or peripheral zone, benign hyperplasia, or cancer respond similarly to growth factors and calcium, but two populations of cancer cells which have been long-lived and may be immortal lines behave differently. GKC-CA cells require serum proteins or high levels of pituitary extract for optimal growth, and neither GKC-CA cells or cells of another cancer line, WB-CA, proliferate well in medium containing reduced levels of calcium. These observations may, however, be a reflection of attachment phenomena rather than of growth responses per se. Growth of cells in serum-free medium has allowed definitive studies of the effects of androgens, and regardless of cell type no response to androgens of prostate epithelial cells under any experimental conditions has been seen.  相似文献   

18.
Summary This laboratory recently reported that normal human mesothelial cells require epidermal growth factor (EGF) and hydrocortisone (HC), in addition to fetal calf serum and a complex defined medium component, in order to grow optimally in surface culture (9). We report here that this normal cell type also forms large colonies at high efficiency in semi-solid medium, but exhihits more stringent serum and EGF requirements for anchorage-independent than for surface growth. Mesothelial cells are unable to divide at all in semi-solid medium with added EGF or with less than 2% serum, whereas they grow slowly but progressively in surface culture under such conditions. In semi-solid medium containing 20% serum and HC, mesothelial cells are stimulated to divide by the addition of as little as 30 pg/ml purified EGF. Human urine or male mouse plasma could substitute for purified EGF, yielding growth commensurate with the levels of EGF in these biological fluids previously measured by others using radioreceptor and radioimmune assays. Thus growth of mesothelial cells in semi-solid medium can serve as a highly sensitive assay of EGF biological activity which is unaffected by the presence of serum proteins. In addition, our results demonstrate that fetal calf serum does not provide mitogenic levels of EGF to cultured cells, raising the question of the identity of plasma and serum mitogens. This work was supported by NIH grants RO1 AG02048 and RO1 CA26656 to James G. Rheinwald and by NIH postdoctoral fellowship F32 AG05303 to Paul J. La Rocca.  相似文献   

19.
A serum-free medium for serial culture of baby hamster kidney cell line 21 (BHK-21) as container-adherent cells was developed. The medium is a 1:1 (v/v) mixture of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with fibroblast growth factor, fibronectin, insulin, oleic acid (preincubated with fatty-acid-free bovine serum albumin as carrier), and transferrin. The fibronectin was required for cell adherence, the other factors for optimal cell multiplication. When cell input was greater than about 1,900 cells/cm2, this serum-free medium supported cell multiplication at a rate approximately equal to the rate in medium with 10% serum. At lower cell input, growth in the serum-free medium was poor unless it was supplemented with serum-free medium which had been conditioned by BHK-21 cells. The conditioned medium contained a factor(s) which enabled or stimulated cell multiplication.  相似文献   

20.
Mouse embryo cells derived in a serum-free medium formulation (SFME cells) do not exhibit growth crisis or chromosomal abnormalities and are nontumorigenic in vivo; these cells are also reversibly growth inhibited by serum or platelet-free plasma (Loo et al.; Science, 236:200-202, 1987). A portion of the inhibitory activity of serum could be extracted by charcoal, a procedure that removes steroid and thyroid hormones. Both L-3,5,3'-triiodothyronine (T3) and hydrocortisone inhibited growth of SFME cells in a reversible manner. The inhibitory activity of serum also was partially removed by treatment with anion exchange resin in a procedure designed to deplete serum of thyroid hormone. However, the effect of serum on untransformed SFME cells could not be prevented by addition of the antiglucocorticoid RU38486, and ras-transformed clones of SFME cells, which are capable of growing in serum-containing medium, retained inhibitory responses to glucocorticoid and, with some clonal variability, to T3. These results suggest that glucocorticoid or thyroid hormones may contribute to the inhibitory activity of serum on SFME cells, but additional factors are also involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号